215 research outputs found

    Principal component-based image segmentation: a new approach to outline in vitro cell colonies

    Get PDF
    The in vitro clonogenic assay is a technique to study the ability of a cell to form a colony in a culture dish. By optical imaging, dishes with stained colonies can be scanned and assessed digitally. Identification, segmentation and counting of stained colonies play a vital part in high-throughput screening and quantitative assessment of biological assays. Image processing of such pictured/scanned assays can be affected by image/scan acquisition artifacts like background noise and spatially varying illumination, and contaminants in the suspension medium. Although existing approaches tackle these issues, the segmentation quality requires further improvement, particularly on noisy and low contrast images. In this work, we present an objective and versatile machine learning procedure to amend these issues by characterizing, extracting and segmenting inquired colonies using principal component analysis, k-means clustering and a modified watershed segmentation algorithm. The intention is to automatically identify visible colonies through spatial texture assessment and accordingly discriminate them from background in preparation for successive segmentation. The proposed segmentation algorithm yielded a similar quality as manual counting by human observers. High F1 scores (>0.9) and low root-mean-square errors (around 14%) underlined good agreement with ground truth data. Moreover, it outperformed a recent state-of-the-art method. The methodology will be an important tool in future cancer research applications

    Pure representational neglect after right thalamic lesion

    Get PDF
    After a right thalamic stroke, an 86-year-old man presented an acute pure left representational neglect in the absence of any perceptual neglect. On spatial mental imagery tasks, the patient systematically omitted items located on his left side, but only when a vantage point was given. This suggests that (1) pure representational neglect is not just a residual finding after recovery from global (perceptual and representational) neglect; (2) space representation can be coded by two independent processes: in viewer-centered or world-based (allocentric) coordinates; and (3) the right thalamus serves as a relay in the processing of spatial visual imagery

    Pure imagery hemi-neglect of far space

    Get PDF
    Patients with hemispatial neglect restricted to near (within reaching distance) or to far space (beyond reaching distance) have been described. This constitutes a double-dissociation considered by current neurocognitive thinking as compelling evidence for separate networks. However, a similar double-dissociation exists with respect to perceived as opposed to imagined space. If the organization of represented space was similar to that of perceived space, it should contain a far/near dissociation as well. This paper describes a patient with pure representational neglect restricted to far space

    Gender and line size factors modulate the deviations of the subjective visual vertical induced by head tilt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The subjective visual vertical (SVV, the visual estimation of gravitational direction) is commonly considered as an indicator of the sense of orientation. The present study examined the impact of two methodological factors (the angle size of the stimulus and the participant's gender) on deviations of the SVV caused by head tilt. Forty healthy participants (20 men and 20 women) were asked to make visual vertical adjustments of a light bar with their head held vertically or roll-tilted by 30° to the left or to the right. Line angle sizes of 0.95° and 18.92° were presented.</p> <p>Results</p> <p>The SVV tended to move in the direction of head tilt in women but away from the direction of head tilt in men. Moreover, the head-tilt effect was also modulated by the stimulus' angle size. The large angle size led to deviations in the direction of head-tilt, whereas the small angle size had the opposite effect.</p> <p>Conclusions</p> <p>Our results showed that gender and line angle size have an impact on the evaluation of the SVV. These findings must be taken into account in the growing body of research that uses the SVV paradigm in disease settings. Moreover, this methodological issue may explain (at least in part) the discrepancies found in the literature on the head-tilt effect.</p

    Perceived Object Stability Depends on Multisensory Estimates of Gravity

    Get PDF
    BACKGROUND: How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object's stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information. METHODOLOGY/PRINCIPAL FINDINGS: In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity). CONCLUSIONS/SIGNIFICANCE: Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall

    Relationship between spatial ability, visuospatial working memory and self-assessed spatial orientation ability: a study in older adults

    Get PDF
    This paper describes some novel spatial tasks and questionnaires designed to assess spatial and orientation abilities. The new tasks and questionnaires were administered to a sample of 90 older adults (41 males, age range 57–90), along with some other tests of spatial ability (Minnesota Paper Form Board, Mental Rotations Test, and Embedded Figures Test) and tests of visuospatial working memory (Corsi’s Block Test and Visual Pattern Test). The internal reliability of the new tasks and questionnaires was analyzed, as well as their relationship with the spatial and working memory tests. The results showed that the new spatial tasks are reliable, correlate with working memory and spatial ability tests and, compared with the latters, show stronger correlations with the self-report questionnaires referring to orientation abilities. A model was also tested (with reference to Allen et al. in Intelligence 22:327–355, 1996) in which the new tasks were assumed to relate to spatial ability and predict orientation abilities as assessed by the self-report measures

    Proposition de mécanisme concerté pour l'hydrogénolyse des hétérocycles à 5 chaînons sur catalyseurs sulfurés

    No full text
    Dallons J. L., Delmon Bernard. Proposition de mécanisme concerté pour l'hydrogénolyse des hétérocycles à 5 chaînons sur catalyseurs sulfurés. In: Bulletin de la Classe des sciences, tome 74, 1988. pp. 15-20
    • …
    corecore