224 research outputs found

    The path to next generation biofuels: successes and challenges in the era of synthetic biology

    Get PDF
    Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels

    Novel approaches for the production of fuels and chemicals in Escherichia coli

    Get PDF
    Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of biofuels and biochemicals. While the carbohydrate portion of edible crops is currently used as the primary feedstock in the biological production of fuels and chemicals, the availability of fatty acid (FA)-rich feedstocks and recent progress in the development of oil-accumulating organisms have drawn the attention to FAs as an attractive alternative. However, microbial platforms to enable this were nearly absent. To this end, we engineered native and heterologous fermentative pathways in E. coli to enable the efficient synthesis of fuels and chemicals from FAs. The current de facto strategy for the synthesis of non-native products in model organisms is He terologous M etabolic E ngineering (HeME), which consists of recruiting foreign genes from native producers. However, the relative incompatibility of the heterologous pathways with the host metabolism may be considered a drawback. As an alternative approach, the HoME ( Ho mologous M etabolic E ngineering) strategy that we propose overcomes this limitation by harnessing the metabolic potential of the host strain. HoME aims at reconstructing heterologous pathways to enable biosynthesis of non-natural products by identifying and assembling native functional surrogates. Implementation of both HeME and HoME strategies in the context of fuels and chemicals biosynthesis has usually been directed to the conversion of feedstocks constituents into a specific product. However, we demonstrated a novel metabolic platform based on a functional reversal of the fatty acid catabolic pathway (β-oxidation) as a means of synthesizing a wide array of products with various chain lengths and functionalities

    Grounding knowledge and normative valuation in agent-based action and scientific commitment

    Get PDF
    Philosophical investigation in synthetic biology has focused on the knowledge-seeking questions pursued, the kind of engineering techniques used, and on the ethical impact of the products produced. However, little work has been done to investigate the processes by which these epistemological, metaphysical, and ethical forms of inquiry arise in the course of synthetic biology research. An attempt at this work relying on a particular area of synthetic biology will be the aim of this chapter. I focus on the reengineering of metabolic pathways through the manipulation and construction of small DNA-based devices and systems synthetic biology. Rather than focusing on the engineered products or ethical principles that result, I will investigate the processes by which these arise. As such, the attention will be directed to the activities of practitioners, their manipulation of tools, and the use they make of techniques to construct new metabolic devices. Using a science-in-practice approach, I investigate problems at the intersection of science, philosophy of science, and sociology of science. I consider how practitioners within this area of synthetic biology reconfigure biological understanding and ethical categories through active modelling and manipulation of known functional parts, biological pathways for use in the design of microbial machines to solve problems in medicine, technology, and the environment. We might describe this kind of problem-solving as relying on what Helen Longino referred to as “social cognition” or the type of scientific work done within what Hasok Chang calls “systems of practice”. My aim in this chapter will be to investigate the relationship that holds between systems of practice within metabolic engineering research and social cognition. I will attempt to show how knowledge and normative valuation are generated from this particular network of practitioners. In doing so, I suggest that the social nature of scientific inquiry is ineliminable to both knowledge acquisition and ethical evaluations

    Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals

    Get PDF
    To ensure the long-term viability of biorefineries, it is essential to go beyond the carbohydrate-based platform and develop complementing technologies capable of producing fuels and chemicals from a wide array of available materials. Glycerol, a readily available and inexpensive compound, is generated during biodiesel, oleochemical, and bioethanol production processes, making its conversion into value-added products of great interest. The high degree of reduction of carbon atoms in glycerol confers the ability to produce fuels and reduced chemicals at higher yields when compared to the use of carbohydrates. This review focuses on current engineering efforts as well as the challenges involved in the utilization of glycerol as a carbon source for the production of fuels and chemicals

    Over-pressurized bioreactors : application to microbial cell cultures

    Get PDF
    In industrial biotechnology, microbial cultures are exposed to different local pressures inside bioreactors. Depending on the microbial species and strains, the increased pressure may have detrimental or beneficial effects on cellular growth and product formation. In this review, the effects of increased air pressure on various microbial cultures growing in bioreactors under moderate total pressure conditions (maximum, 15 bar) will be discussed. Recent data illustrating the diversity of increased air pressure effects at different levels in microbial cells cultivation will be presented, with particular attention to the effects of oxygen and carbon dioxide partial pressures on cellular growth and product formation, and the concomitant effect of oxygen pressure on antioxidant cellular defense mechanisms.The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028," cofunded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. A special aknowledgement is given to FCT for the support to the improvement of infrastructures awarded by the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462)

    Over-pressurized bioreactors : application to microbial cell cultures

    Get PDF
    In industrial biotechnology, microbial cultures are exposed to different local pressures inside bioreactors. Depending on the microbial species and strains, the increased pressure may have detrimental or beneficial effects on cellular growth and product formation. In this review, the effects of increased air pressure on various microbial cultures growing in bioreactors under moderate total pressure conditions (maximum, 15 bar) will be discussed. Recent data illustrating the diversity of increased air pressure effects at different levels in microbial cells cultivation will be presented, with particular attention to the effects of oxygen and carbon dioxide partial pressures on cellular growth and product formation, and the concomitant effect of oxygen pressure on antioxidant cellular defense mechanisms.The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028," cofunded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. A special aknowledgement is given to FCT for the support to the improvement of infrastructures awarded by the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462)

    High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal

    Get PDF
    Promising approaches to produce higher alcohols, e.g., isobutanol, using Escherichia coli have been developed with successful results. Here, we translated the isobutanol process from shake flasks to a 1-L bioreactor in order to characterize three E. coli strains. With in situ isobutanol removal from the bioreactor using gas stripping, the engineered E. coli strain (JCL260) produced more than 50 g/L in 72 h. In addition, the isobutanol production by the parental strain (JCL16) and the high isobutanol-tolerant mutant (SA481) were compared with JCL260. Interestingly, we found that the isobutanol-tolerant strain in fact produced worse than either JCL16 or JCL260. This result suggests that in situ product removal can properly overcome isobutanol toxicity in E. coli cultures. The isobutanol productivity was approximately twofold and the titer was 9% higher than n-butanol produced by Clostridium in a similar integrated system

    A Bio-Catalytic Approach to Aliphatic Ketones

    Get PDF
    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid “Bio-Catalytic conversion” approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals
    corecore