437 research outputs found

    Λ+c production vs the event charged-particle multiplicity in pp collisions at 13 TeV with ALICE at the LHC

    No full text
    The Quantum Chromo-Dynamics (QCD) theory predicts, in condition of very high temperature and/or energy density, a phase transition from the ordinary nuclear matter to a colour-deconfined medium called Quark–Gluon Plasma (QGP). The ALICE experiment was designed and optimized for the investigation of this hot and dense medium, produced via heavy-ion collisions at the Large Hadron Collider (LHC). Due to the very short lifetime of the QGP, its properties cannot be directly revealed and its characterization is done through indirect signals, obtained from the observation of the ordinary particles that emerge from the interaction region. In particular, charm quarks are effective probes used for the investigation of QGP. Due to their large masses, they are produced in hard scattering processes on a timescale shorter than the QGP formation time and therefore experience the whole system evolution. The measurement of charm-baryon production, and in particular the baryon-to-meson ratios, provides unique information to characterize novel mechanisms of hadron formation beyond in-vacuum fragmentation, e.g. coalescence, which are expected to be significant in presence of a medium characterized by free colour charges. Measurements of charm-baryon production in pp collisions are essential to establish a baseline for p-A and A-A collisions. In addition, they provide critical tests of perturbative QCD (pQCD) calculations and models of charm hadronisation in hadronic collisions. The aim of the studies carried out in this thesis is the measurement of Λ+c charmed baryon yield, employed for the estimation of the baryon-to-meson ratio Λ+c /D0. The first measurements of the Λ+c production yields and of the Λ+c /D0 baryon-to-meson ratios as a function of the charged-particle pseudorapidity density are presented. The study allows the characterization of the evolution of the Λ+c /D0 baryon-to-meson ratio from very low to high charged particle density and provides new experimental constraints on the production mechanisms in pp collisions. The analysed sample is collected in pp collisions at the energy in the centre-of-mass system of √s = 13 TeV with the ALICE detector. The measurement is performed by reconstructing the hadronic decay channel Λ+c → pK0s→ pπ+π−, exploiting selections on its decay topology and on the particle identification (PID) of the decay products, extracting the signal via an invariant mass analysis and correcting for its selection and reconstruction efficiency and for the detector acceptance. A machine learning algorithm based on Boosted Decision Trees (BDT) has been developed and is used in order to improve the signal extraction by optimally combining topological and PID variables that allow discriminating signal candidates from the combinatorial background. The results are compared with a theoretical model that explains the multiplicity dependence by a canonical treatment of quantum charges in the statistical hadronisation approach and with predictions from PYTHIA event generators that implement colour reconnection mechanisms beyond the leading colour approximation to model the hadronisation process

    Analysis of heavy-flavour particles in ALICE with the O

    No full text
    Precise measurements of heavy-flavour hadrons down to very low pT represent the core of the physics program of the upgraded ALICE experiment in Run 3 [1]. These physics probes are characterised by a very small signal-to-background ratio requiring very large statistics of minimum-bias events. In Run 3, ALICE is expected to collect up to 13 nb−1 of lead–lead collisions, corresponding to about 1 × 1011 minimum-bias events. In order to analyse this unprecedented amount of data, which is about 100 times larger than the statistics collected in Run 1 and Run 2, the ALICE collaboration is developing a complex analysis framework that aims at maximising the processing speed and data volume reduction [2]. In this paper, the strategy of reconstruction, selection, skimming, and analysis of heavy-flavour events for Run 3 will be presented. Some preliminary results on the reconstruction of charm mesons and baryons will be shown and the prospects for future developments and optimisation discussed

    Higher harmonic non-linear flow modes of charged hadrons in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV

    No full text
    International audienceAnisotropic flow coefficients, vn_{n}, non-linear flow mode coefficients, χn,mk_{n,mk}, and correlations among different symmetry planes, ρn,mk_{n,mk} are measured in Pb-Pb collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV. Results obtained with multi-particle correlations are reported for the transverse momentum interval 0.2 < pT_{T}< 5.0 GeV/c within the pseudorapidity interval 0.4 < |η| < 0.8 as a function of collision centrality. The vn_{n} coefficients and χn,mk_{n,mk} and ρn,mk_{n,mk} are presented up to the ninth and seventh harmonic order, respectively. Calculations suggest that the correlations measured in different symmetry planes and the non-linear flow mode coefficients are dependent on the shear and bulk viscosity to entropy ratios of the medium created in heavy-ion collisions. The comparison between these measurements and those at lower energies and calculations from hydrodynamic models places strong constraints on the initial conditions and transport properties of the system.[graphic not available: see fulltext

    Pseudorapidity densities of charged particles with transverse momentum thresholds in pp collisions at √ s = 5.02 and 13 TeV

    No full text
    The pseudorapidity density of charged particles with minimum transverse momentum (pT) thresholds of 0.15, 0.5, 1, and 2 GeV/c is measured in pp collisions at the center of mass energies of √s=5.02 and 13 TeV with the ALICE detector. The study is carried out for inelastic collisions with at least one primary charged particle having a pseudorapidity (η) within 0.8pT larger than the corresponding threshold. In addition, measurements without pT-thresholds are performed for inelastic and nonsingle-diffractive events as well as for inelastic events with at least one charged particle having |η|2GeV/c), highlighting the importance of such measurements for tuning event generators. The new measurements agree within uncertainties with results from the ATLAS and CMS experiments obtained at √s=13TeV.

    Measurement of inclusive J/ψ\psi pair production cross section in pp collisions at s=13\sqrt{s} = 13 TeV

    No full text
    International audienceThe production cross section of inclusive J/ψ\psi pairs in pp collisions at a centre-of-mass energy s=13\sqrt{s} = 13 TeV is measured with ALICE. The measurement is performed for J/ψ\psi in the rapidity interval 2.502.5 0. The production cross section of inclusive J/ψ\psi pairs is reported to be 10.3±2.3(stat.)±1.3(syst.)10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)} nb in this kinematic interval. The contribution from non-prompt J/ψ\psi (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data

    Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions

    No full text
    International audienceMeasurements of the production of electrons from heavy-flavour hadron decays in pp collisions at s=13\sqrt{s} = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (pTp_{\rm T}) of 0.2 GeV/c/c and up to pT=35p_{\rm T} = 35 GeV/c/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the pTp_{\rm T} range 0.5<pT<260.5 < p_{\rm T} < 26 GeV/c/c at sNN=8.16\sqrt{s_{\rm NN}} = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong pTp_{\rm T} dependence is observed in pp collisions, where the yield of high-pTp_{\rm T} electrons increases faster as a function of multiplicity than the one of low-pTp_{\rm T} electrons. The measurement in p-Pb collisions shows no pTp_{\rm T} dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations

    Observation of medium-induced yield enhancement and acoplanarity broadening of low-pTp_\mathrm{T} jets from measurements in pp and central Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceThe ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high pTp_{\rm T}) hadron trigger in proton-proton and central Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter R=0.2R=0.2, 0.4, and 0.5 in the range 7<pT,jet<1407 < p_{\rm T,jet} < 140 GeV/c/c and trigger-recoil jet azimuthal separation π/2<Δφ<π\pi/2 < \Delta\varphi < \pi. The measurements exhibit a marked medium-induced jet yield enhancement at low pTp_{\rm T} and at large azimuthal deviation from Δφπ\Delta\varphi\sim\pi. The enhancement is characterized by its dependence on Δφ\Delta\varphi, which has a slope that differs from zero by 4.7σ\sigma. Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation

    Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

    No full text
    International audienceThe Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=\sqrt{s_{\mathrm{NN}}}= 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2v_{2}) and triangular (v3v_{3}) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Normr_{3}^{\rm Norm} is found to be larger than zero and to have a magnitude similar to r2Normr_{2}^{\rm Norm}, thus pointing to a large background contribution for these measurements. Furthermore, r2Normr_{2}^{\rm Norm} can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMWf_{\rm CMW}) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMWf_{\rm CMW}, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level

    Measurement of the Cross Sections of Ξc0\Xi^0_{c} and Ξc+\Xi^+_{c} Baryons and of the Branching-Fraction Ratio BR(Ξc0Ξe+νe\Xi^0_{c} \rightarrow \Xi^-{e}^+\nu_{ e})/BR(Ξc0Ξπ+\Xi^0_{c} \rightarrow \Xi^-\pi^+) in pp collisions at 13 TeV

    No full text
    The pTp_T-differential cross sections of prompt charm-strange baryons Ξc0_c^0 and Ξc+_c^+ were measured at midrapidity (|y|<0.5) in proton-proton (pp) collisions at a center-of-mass energy s\sqrt{s} = 13 TeV with the ALICE detector at the LHC. The Ξc0_c^0 baryon was reconstructed via both the semileptonic decay (Ξ^-e+^+νe_e) and the hadronic decay (Ξ^-π+^+) channels. The Ξc+_c^+ baryon was reconstructed via the hadronic decay (Ξ^-π+^+π+^+) channel. The branching-fraction ratio BR(Ξc0_c^0→Ξ^-e+^+νe_e)/BR(Ξc0_c^0→Ξ^-π+^+) = 1.38±0.14(stat)±0.22(syst) was measured with a total uncertainty reduced by a factor of about 3 with respect to the current world average reported by the Particle Data Group. The transverse momentum (pTp_T) dependence of the Ξc0_c^0- and Ξc+_c^+-baryon production relative to the D0^0 meson and to the Σc0,+,++_c^{0,+,++}- and Λc+_c^+-baryon production are reported. The baryon-to-meson ratio increases toward low pTp_T up to a value of approximately 0.3. The measurements are compared with various models that take different hadronization mechanisms into consideration. The results provide stringent constraints to these theoretical calculations and additional evidence that different processes are involved in charm hadronization in electron-positron (e+^+e^-) and hadronic collisions
    corecore