25 research outputs found

    Thermodynamics of Cooperative DNA Recognition at a Replication Origin and Transcription Regulatory Site

    Get PDF
    Binding cooperativity guides the formation of protein-nucleic acid complexes, in particular those that are highly regulated such as replication origins and transcription sites. Using the DNA binding domain of the origin binding and transcriptional regulator protein E2 from human papillomavirus type 16 as model, and through isothermal titration calorimetry analysis, we determined a positive, entropy-driven cooperativity upon binding of the protein to its cognate tandem double E2 site. This cooperativity is associated with a change in DNA structure, where the overall B conformation is maintained. Two homologous E2 domains, those of HPV18 and HPV11, showed that the enthalpic-entropic components of the reaction and DNA deformation can diverge. Because the DNA binding helix is almost identical in the three domains, the differences must lie dispersed throughout this unique dimeric β-barrel fold. This is in surprising agreement with previous results for this domain, which revealed a strong coupling between global dynamics and DNA recognition.Fil: Dellarole, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Sánchez Miguel, Ignacio Enrique. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: de Prat Gay, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentin

    Free energy contributions to direct readout of a DNA sequence

    Get PDF
    The energetic contributions of individual DNA-contacting side chains to specific DNA recognition in the human papillomavirus 16 E2C-DNA complex is small (less than 1.0 kcal mol-1), independent of the physical and chemical nature of the interaction, and is strictly additive. The sum of the individual contributions differs 1.0 kcal mol-1 from the binding energy of the wild-type protein. This difference corresponds to the contribution from the deformability of the DNA, known as "indirect readout." Thus, we can dissect the energetic contribution to DNA binding into 90% direct and 10% indirect readout components. The lack of high energy interactions indicates the absence of "hot spots," such as those found in protein-protein interfaces. These results are compatible with a highly dynamic and "wet" protein-DNA interface, yet highly specific and tight, where individual interactions are constantly being formed and broken.Fil: Ferreiro, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Dellarole, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Nadra, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: de Prat Gay, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Comprehensive comparison of the interaction of the E2 master regulator with its cognate target DNA sites in 73 human papillomavirus types by sequence statistics

    Get PDF
    Mucosal human papillomaviruses (HPVs) are etiological agents of oral, anal and genital cancer. Properties of high- and low-risk HPV types cannot be reduced to discrete molecular traits. The E2 protein regulates viral replication and transcription through a finely tuned interaction with four sites at the upstream regulatory region of the genome. A computational study of the E2–DNA interaction in all 73 types within the alpha papillomavirus genus, including all known mucosal types, indicates that E2 proteins have similar DNA discrimination properties. Differences in E2–DNA interaction among HPV types lie mostly in the target DNA sequence, as opposed to the amino acid sequence of the conserved DNA-binding alpha helix of E2. Sequence logos of natural and in vitro selected sites show an asymmetric pattern of conservation arising from indirect readout, and reveal evolutionary pressure for a putative methylation site. Based on DNA sequences only, we could predict differences in binding energies with a standard deviation of 0.64 kcal/mol. These energies cluster into six discrete affinity hierarchies and uncovered a fifth E2-binding site in the genome of six HPV types. Finally, certain distances between sites, affinity hierarchies and their eventual changes upon methylation, are statistically associated with high-risk types

    E2, transcription and replication regulator of human papillomavirus: protein-DNA interaction, conformational dynamics and evolutionary divergence

    Get PDF
    Más de 50 tipos de papilomavirus humanos (HPV) infectan epitelio mucoso causando una variedad de lesiones benignas y malignas. El dominio C-terminal de la proteína E2 de HPV (E2C) discrimina entre cuatro sitios de ADN altamente similares regulando el ciclo de vida del virus vía la activación de la replicación y la activación y/o represión de la transcripción. Con el fin de tratar de entender la naturaleza de la interacción entre E2C y ADN, realizamos un análisis detallado del complejo utilizando herramientas bioinformáticas y el contenido de información en las secuencias proteicas y nucleotídicas y usando técnicas biofísicas, proteínas E2C recombinantes y sitios sintéticos de ADN específicos y no-específicos. Antes de estudiar el rol de la interacción E2C-ADN, nos focalizamos en el proceso de polimerización no-funcional de E2C dado que su desarrollo es reprimido por la presencia de ADN específico. Inducida por temperatura, la polimerización de E2C se desencadena mediante la formación de un núcleo estructurado y finaliza en un paisaje morfológico de oligómeros solubles con propiedades amiloideas. El estudio computacional de la interacción E2-ADN de todos los tipos de HPV mucosos indica que las proteínas E2 de distintos tipos poseen propiedades de discriminación de ADN similares. Las diferencias en la interacción E2-ADN se encuentran principalmente en la secuencia de ADN específico, en acuerdo con el análisis de la unión de E2C a diferentes sitios mediante titulaciones isotérmicas de calorimetría. Basado solamente en la secuencia de ADN, logramos predecir diferencias en la energía de unión las cuales se ordenaron en seis grupos de afinidades discretas. Ciertas jerarquías de afinidades como también distancias entre sitios y presencia de sitios de metilación se encontraron estadísticamente asociados con tipos de HPV propensos a ser malignos. Estudiamos la estabilidad y la propiedad de discriminación de secuencia de cinco proteínas E2C homólogas de identidad de secuencia proteica en el rango 44% al 77%. La desnaturalización al equilibrio y la cinética de desplegado en cloruro de guanidinio mostró que todos los dominios son homodímeros estables que se desnaturalizan vía un mecanismo de dos estados. Medimos la unión a distintos sitios de ADN y confirmamos que el mecanismo de unión para todos los complejos es el mismo en base a una genuina compensación entropico-entálpica. Nuestros resultados muestran que la inusual estructura de barril-beta de E2C puede acomodarse a numerosas mutaciones manteniendo las propiedades cruciales de conformación y función. Pero la unión cooperativa a sitios adyacentes de ADN mostró que los componentes entálpicos-entrópicos de la reacción como la deformación del ADN puede divergir entre distintas homólogas en acuerdo con un fuerte acoplamiento entre la dinámica global de la proteína y el reconocimiento del ADN.More than 50 Human papillomavirus (HPV) types infect mucosal epithelia causing a variety of benign and malign lesions. The C-terminal domain of HPV E2 protein (E2C) discriminates between four highly similar cognate DNA sites in order to regulate the virus life cycle by activating replication and repressing and/or activating transcription. In order to try to understand the nature of the interaction between E2C and DNA, we performed a detailed analysis of the complex using bioinformatics tools and the information content on DNA sequences and using biophysical techniques and recombinant engineered and homologous E2C proteins and synthesized specific and nonspecific DNA sites. Before studying the role of the E2C-DNA interaction, we focused on the nonfunctional polymerization process of E2C as its development is repressed by the presence of DNA binding sites. Triggered by heat, the polymerization of E2C starts by formation of a stable and structured nucleus and ends in an organized morphology landscape of soluble amyloid-like oligomers. The computational study of the E2-DNA interaction of all mucosal HPV types, indicates that E2 proteins have similar DNA discrimination properties. Differences in E2-DNA interaction among HPV types lie mostly in the target DNA sequence, in agreement with the analysis of binding of E2C to different sites using isothermal titration calorimetry. Based on DNA sequences only, we could predict differences in binding energies which clustered into six discrete affinity hierarchies. Finally, certain distances between sites, affinity hierarchies and their eventual changes upon methylation, are statistically associated with high-risk types. We studied the stability and DNA discrimination properties of five homologous E2C proteins with sequence identities ranging from 45% to 77%. Equilibrium denaturation and unfolding kinetics in guanidinium chloride showed that all five domains are very stable homodimers that unfold via a two-state mechanism. We used isothermal titration calorimetry to follow binding of the five proteins to three different DNA sites. Genuine enthalpy-entropy compensation confirms that the binding mechanism is the same for all complexes. The five domains have nearly identical capacities for DNA sequence discrimination despite the high degree of sequence divergence. Our results show that the unusual E2C beta-barrel can accommodate many mutations while retaining its crucial conformational and functional properties. But cooperative binding to tandem DNA E2 site showed that the enthalpic-entropic components of the reaction and DNA deformation can diverge in agreement with a strong coupling between global dynamics and DNA recognition.Fil:Dellarole, Mariano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Experimental snapshots of a protein-DNA binding landscape

    Get PDF
    Protein recognition of DNA sites is a primary event for gene function. Its ultimate mechanistic understanding requires an integrated structural, dynamic, kinetic, and thermodynamic dissection that is currently limited considering the hundreds of structures of protein-DNA complexes available. We describe a protein-DNA-binding pathway in which an initial, diffuse, transition state ensemble with some nonnative contacts is followed by formation of extensive nonnative interactions that drive the system into a kinetic trap. Finally, nonnative contacts are slowly rearranged into native-like interactions with the DNA backbone. Dissimilar protein-DNA interfaces that populate along the DNA-binding route are explained by a temporary degeneracy of protein-DNA interactions, centered on “dual-role” residues. The nonnative species slow down the reaction allowing for extended functionality

    Thermodynamics of Cooperative DNA Recognition at a Replication Origin and Transcription Regulatory Site

    No full text
    Binding cooperativity guides the formation of protein−nucleic acid complexes, in particular those that are highly regulated such as replication origins and transcription sites. Using the DNA binding domain of the origin binding and transcriptional regulator protein E2 from human papillomavirus type 16 as model, and through isothermal titration calorimetry analysis, we determined a positive, entropy-driven cooperativity upon binding of the protein to its cognate tandem double E2 site. This cooperativity is associated with a change in DNA structure, where the overall B conformation is maintained. Two homologous E2 domains, those of HPV18 and HPV11, showed that the enthalpic−entropic components of the reaction and DNA deformation can diverge. Because the DNA binding helix is almost identical in the three domains, the differences must lie dispersed throughout this unique dimeric β-barrel fold. This is in surprising agreement with previous results for this domain, which revealed a strong coupling between global dynamics and DNA recognition
    corecore