365 research outputs found

    Deep-underground search for the decay of 180m-Ta with an ultra-low-background HPGe detector

    Full text link
    180m^{180m}Ta is the longest-lived metastable state presently known. Its decay has not been observed yet. In this work, we report a new result on the decay of 180m^{180m}Ta obtained with a 2015.122015.12-g tantalum sample measured for 527.7527.7 d with an ultra-low background HPGe detector in the STELLA laboratory of the Laboratori Nazionali del Gran Sasso, in Italy. Before the measurement, the sample has been stored deep-underground for ten years, resulting in subdominant background contributions from cosmogenically activated 182^{182}Ta. We observe no signal in the regions of interest and set half-life limits on the process for the two channels EC and β−\beta^-: T1/2, EC>1.6×1018T_{1/2,~\mathrm{EC}} > 1.6 \times 10^{18} yr and T1/2, β−>1.1×1018T_{1/2,~\beta^-} > 1.1\times 10^{18} yr (9090% C. I.), respectively. We also set the limit on the γ\gamma de-excitation / IC channel: T1/2, IC>4.1×1015T_{1/2,~\mathrm{IC}} > 4.1 \times 10^{15} yr (9090% C. I.). These are, as of now, the most stringent bounds on the decay of 180m^{180m}Ta worldwide.Comment: 8 pages, 7 figures, 4 table

    The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures

    Full text link
    The CUORE experiment is the world's largest bolometric experiment. The detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg. CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso, Italy, searching for the neutrinoless double beta decay of 130Te. A large custom cryogen-free cryostat allows reaching and maintaining a base temperature of about 10 mK, required for the optimal operation of the detector. This apparatus has been designed in order to achieve a low noise environment, with minimal contribution to the radioactive background for the experiment. In this paper, we present an overview of the CUORE cryostat, together with a description of all its sub-systems, focusing on the solutions identified to satisfy the stringent requirements. We briefly illustrate the various phases of the cryostat commissioning and highlight the relevant steps and milestones achieved each time. Finally, we describe the successful cooldown of CUORE

    Search for Neutrinoless Double-Beta Decay of 130^{130}Te with CUORE-0

    Get PDF
    We report the results of a search for neutrinoless double-beta decay in a 9.8~kg⋅\cdotyr exposure of 130^{130}Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1±0.3 keV5.1\pm 0.3{\rm~keV} FWHM and 0.058±0.004 (stat.)±0.002 (syst.)0.058 \pm 0.004\,(\mathrm{stat.})\pm 0.002\,(\mathrm{syst.})~counts/(keV⋅\cdotkg⋅\cdotyr), respectively. The median 90%~C.L. lower-limit sensitivity of the experiment is 2.9×1024 yr2.9\times 10^{24}~{\rm yr} and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130^{130}Te and place a Bayesian lower bound on the decay half-life, T1/20ν>T^{0\nu}_{1/2}>~2.7×1024 yr 2.7\times 10^{24}~{\rm yr} at 90%~C.L. Combining CUORE-0 data with the 19.75~kg⋅\cdotyr exposure of 130^{130}Te from the Cuoricino experiment we obtain T1/20ν>4.0×1024 yrT^{0\nu}_{1/2} > 4.0\times 10^{24}~\mathrm{yr} at 90%~C.L.~(Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, mββ<270m_{\beta\beta}< 270 -- 760 meV760~\mathrm{meV}.Comment: 6 pages, 5 figures, updated version as published in PR

    Analysis Techniques for the Evaluation of the Neutrinoless Double-Beta Decay Lifetime in 130^{130}Te with CUORE-0

    Full text link
    We describe in detail the methods used to obtain the lower bound on the lifetime of neutrinoless double-beta (0νββ0\nu\beta\beta) decay in 130^{130}Te and the associated limit on the effective Majorana mass of the neutrino using the CUORE-0 detector. CUORE-0 is a bolometric detector array located at the Laboratori Nazionali del Gran Sasso that was designed to validate the background reduction techniques developed for CUORE, a next-generation experiment scheduled to come online in 2016. CUORE-0 is also a competitive 0νββ0\nu\beta\beta decay search in its own right and functions as a platform to further develop the analysis tools and procedures to be used in CUORE. These include data collection, event selection and processing, as well as an evaluation of signal efficiency. In particular, we describe the amplitude evaluation, thermal gain stabilization, energy calibration methods, and the analysis event selection used to create our final 0νββ0\nu\beta\beta decay search spectrum. We define our high level analysis procedures, with emphasis on the new insights gained and challenges encountered. We outline in detail our fitting methods near the hypothesized 0νββ0\nu\beta\beta decay peak and catalog the main sources of systematic uncertainty. Finally, we derive the 0νββ0\nu\beta\beta decay half-life limits previously reported for CUORE-0, T1/20ν>2.7×1024T^{0\nu}_{1/2}>2.7\times10^{24} yr, and in combination with the Cuoricino limit, T1/20ν>4.0×1024T^{0\nu}_{1/2}>4.0\times10^{24} yr.Comment: 18 pages, 18 figures. (Version 3 reflects only minor changes to the text. Few additional details, no major content changes.

    CUORE-0 results and prospects for the CUORE experiment

    Full text link
    With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory for Rare Events) experiment aims at searching for neutrinoless double beta decay of 130Te with unprecedented sensitivity. Expected to start data taking in 2015, CUORE is currently in an advanced construction phase at LNGS. CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1 sigma (9.5E25 y at the 90% confidence level), in five years of live time, corresponding to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric detectors could improve CUORE sensitivity and competitiveness of bolometric detectors towards a full analysis of the inverted neutrino mass hierarchy. CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g each, arranged in a 13 floor structure) constructed strictly following CUORE recipes both for materials and assembly procedures. An experiment its own, CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta decay half-life of 130Te around 3E24 y in one year of live time. We present an update of the data, corresponding to an exposure of 18.1 kg y. An analysis of the background indicates that the CUORE performance goal is satisfied while the sensitivity goal is within reach.Comment: 10 pages, 3 figures, to appear in the proceedings of NEUTRINO 2014, 26th International Conference on Neutrino Physics and Astrophysics, 2-7 June 2014, held at Boston, Massachusetts, US

    Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments

    Get PDF
    CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/keV/kg/y will be reached, in five years of data taking CUORE will have a 1 sigma half life sensitivity of 10E26 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.Comment: 7 pages, 4 figures, to be published in the proceedings of ICHEP 2014, 37th International Conference on High Energy Physics, Valencia (Spain) 2-9 July 201

    Measurement of the Two-Neutrino Double Beta Decay Half-life of 130^{130}Te with the CUORE-0 Experiment

    Get PDF
    We report on the measurement of the two-neutrino double beta decay half-life of 130^{130}Te with the CUORE-0 detector. From an exposure of 33.4 kg⋅\cdoty of TeO2_2, the half-life is determined to be T1/22νT_{1/2}^{2\nu} = [8.2 ±\pm 0.2 (stat.) ±\pm 0.6 (syst.)] ×\times 1020^{20}y. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the 130^{130}Te neutrinoless double beta decay region of interest.Comment: Corrected typo in section 9: 3.43E5 Bq/kg should have read 3.43E-5 Bq/k

    Prognostic Value and Relative Cutoffs of Triglycerides Predicting Cardiovascular Outcome in a Large Regional-Based Italian Database

    Get PDF
    BACKGROUND: Despite longstanding epidemiologic data on the association between increased serum triglycerides and car&#x2;diovascular events, the exact level at which risk begins to rise is unclear. The Working Group on Uric Acid and Cardiovascular Risk of the Italian Society of Hypertension has conceived a protocol aimed at searching for the prognostic cutoff value of triglycerides in predicting cardiovascular events in a large regional-based Italian cohort. METHODS AND RESULTS: Among 14189 subjects aged 18 to 95years followed-up for 11.2 (5.3–13.2) years, the prognostic cutoff value of triglycerides, able to discriminate combined cardiovascular events, was identified by means of receiver operating characteristic curve. The conventional (150mg/dL) and the prognostic cutoff values of triglycerides were used as independent predictors in separate multivariable Cox regression models adjusted for age, sex, body mass index, total and high-density lipoprotein cholesterol, serum uric acid, arterial hypertension, diabetes, chronic renal disease, smoking habit, and use of an&#x2;tihypertensive and lipid-lowering drugs. During 139375 person-years of follow-up, 1601 participants experienced cardiovas&#x2;cular events. Receiver operating characteristic curve showed that 89mg/dL (95% CI, 75.8–103.3, sensitivity 76.6, specificity 34.1, P&lt;0.0001) was the prognostic cutoff value for cardiovascular events. Both cutoff values of triglycerides, the conventional and the newly identified, were accepted as multivariate predictors in separate Cox analyses, the hazard ratios being 1.211 (95% CI, 1.063–1.378, P=0.004) and 1.150 (95% CI, 1.021–1.295, P=0.02), respectively. CONCLUSIONS: Lower (89mg/dL) than conventional (150mg/dL) prognostic cutoff value of triglycerides for cardiovascular events does exist and is associated with increased cardiovascular risk in an Italian cohor

    Serum Uric Acid/Serum Creatinine Ratio and Cardiovascular Mortality in Diabetic Individuals—The Uric Acid Right for Heart Health (URRAH) Project

    Get PDF
    Several studies have detected a direct association between serum uric acid (SUA) and cardiovascular (CV) risk. In consideration that SUA largely depends on kidney function, some studies explored the role of the serum creatinine (sCr)-normalized SUA (SUA/sCr) ratio in different settings. Previously, the URRAH (URic acid Right for heArt Health) Study has identified a cut-off value of this index to predict CV mortality at 5.35 Units. Therefore, given that no SUA/sCr ratio threshold for CV risk has been identified for patients with diabetes, we aimed to assess the relationship between this index and CV mortality and to validate this threshold in the URRAH subpopulation with diabetes; the URRAH participants with diabetes were studied (n = 2230). The risk of CV mortality was evaluated by the Kaplan–Meier estimator and Cox multivariate analysis. During a median follow-up of 9.2 years, 380 CV deaths occurred. A non-linear inverse association between baseline SUA/sCr ratio and risk of CV mortality was detected. In the whole sample, SUA/sCr ratio &gt; 5.35 Units was not a significant predictor of CV mortality in diabetic patients. However, after stratification by kidney function, values &gt; 5.35 Units were associated with a significantly higher mortality rate only in normal kidney function, while, in participants with overt kidney dysfunction, values of SUA/sCr ratio &gt; 7.50 Units were associated with higher CV mortality. The SUA/sCr ratio threshold, previously proposed by the URRAH Study Group, is predictive of an increased risk of CV mortality in people with diabetes and preserved kidney function. While, in consideration of the strong association among kidney function, SUA, and CV mortality, a different cut-point was detected for diabetics with impaired kidney function. These data highlight the different predictive roles of SUA (and its interaction with kidney function) in CV risk, pointing out the difference in metabolic- and kidney-dependent SUA levels also in diabetic individual

    Serum Uric Acid and Kidney Disease Measures Independently Predict Cardiovascular and Total Mortality: The Uric Acid Right for Heart Health (URRAH) Project

    Get PDF
    Background: Serum uric acid predicts the onset and progression of kidney disease, and the occurrence of cardiovascular and all-cause mortality. Nevertheless, it is unclear which is the appropriate definition of hyperuricemia in presence of chronic kidney disease (CKD). Our goal was to study the independent impact of uric acid and CKD on mortality. Methods: We retrospectively investigated 21,963 patients from the URRAH study database. Hyperuricemia was defined on the basis of outcome specific cut-offs separately identified by ROC curves according to eGFR strata. The primary endpoints were cardiovascular and all-cause mortality. Results: After a mean follow-up of 9.8 year, there were 1,582 (7.20%) cardiovascular events and 3,130 (14.25%) deaths for all causes. The incidence of cardiovascular and all-cause mortality increased in parallel with reduction of eGFR strata and with progressively higher uric acid quartiles. During 215,618 person-years of follow-up, the incidence rate for cardiovascular mortality, stratified based on eGFR (&gt;90, between 60 and 90 and &lt;60 ml/min) was significantly higher in patients with hyperuricemia and albuminuria (3.8, 22.1 and 19.1, respectively) as compared to those with only one risk factor or none (0.4, 2.8 and 3.1, respectively). Serum uric acid and eGFR significantly interact in determining cardiovascular and all-cause mortality. For each SUA increase of 1 mg/dl the risk for mortality increased by 10% even after adjustment for potential confounding factors included eGFR and the presence of albuminuria. Conclusions: hyperuricemia is a risk factor for cardiovascular and all-cause mortality additively to eGFR strata and albuminuria, in patients at cardiovascular risk
    • …
    corecore