288 research outputs found

    Deep-underground search for the decay of 180m-Ta with an ultra-low-background HPGe detector

    Full text link
    180m^{180m}Ta is the longest-lived metastable state presently known. Its decay has not been observed yet. In this work, we report a new result on the decay of 180m^{180m}Ta obtained with a 2015.122015.12-g tantalum sample measured for 527.7527.7 d with an ultra-low background HPGe detector in the STELLA laboratory of the Laboratori Nazionali del Gran Sasso, in Italy. Before the measurement, the sample has been stored deep-underground for ten years, resulting in subdominant background contributions from cosmogenically activated 182^{182}Ta. We observe no signal in the regions of interest and set half-life limits on the process for the two channels EC and β\beta^-: T1/2, EC>1.6×1018T_{1/2,~\mathrm{EC}} > 1.6 \times 10^{18} yr and T1/2, β>1.1×1018T_{1/2,~\beta^-} > 1.1\times 10^{18} yr (9090% C. I.), respectively. We also set the limit on the γ\gamma de-excitation / IC channel: T1/2, IC>4.1×1015T_{1/2,~\mathrm{IC}} > 4.1 \times 10^{15} yr (9090% C. I.). These are, as of now, the most stringent bounds on the decay of 180m^{180m}Ta worldwide.Comment: 8 pages, 7 figures, 4 table

    The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures

    Full text link
    The CUORE experiment is the world's largest bolometric experiment. The detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg. CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso, Italy, searching for the neutrinoless double beta decay of 130Te. A large custom cryogen-free cryostat allows reaching and maintaining a base temperature of about 10 mK, required for the optimal operation of the detector. This apparatus has been designed in order to achieve a low noise environment, with minimal contribution to the radioactive background for the experiment. In this paper, we present an overview of the CUORE cryostat, together with a description of all its sub-systems, focusing on the solutions identified to satisfy the stringent requirements. We briefly illustrate the various phases of the cryostat commissioning and highlight the relevant steps and milestones achieved each time. Finally, we describe the successful cooldown of CUORE

    Search for Neutrinoless Double-Beta Decay of 130^{130}Te with CUORE-0

    Get PDF
    We report the results of a search for neutrinoless double-beta decay in a 9.8~kg\cdotyr exposure of 130^{130}Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1±0.3 keV5.1\pm 0.3{\rm~keV} FWHM and 0.058±0.004(stat.)±0.002(syst.)0.058 \pm 0.004\,(\mathrm{stat.})\pm 0.002\,(\mathrm{syst.})~counts/(keV\cdotkg\cdotyr), respectively. The median 90%~C.L. lower-limit sensitivity of the experiment is 2.9×1024 yr2.9\times 10^{24}~{\rm yr} and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130^{130}Te and place a Bayesian lower bound on the decay half-life, T1/20ν>T^{0\nu}_{1/2}>~2.7×1024 yr 2.7\times 10^{24}~{\rm yr} at 90%~C.L. Combining CUORE-0 data with the 19.75~kg\cdotyr exposure of 130^{130}Te from the Cuoricino experiment we obtain T1/20ν>4.0×1024 yrT^{0\nu}_{1/2} > 4.0\times 10^{24}~\mathrm{yr} at 90%~C.L.~(Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, mββ<270m_{\beta\beta}< 270 -- 760 meV760~\mathrm{meV}.Comment: 6 pages, 5 figures, updated version as published in PR

    Analysis Techniques for the Evaluation of the Neutrinoless Double-Beta Decay Lifetime in 130^{130}Te with CUORE-0

    Full text link
    We describe in detail the methods used to obtain the lower bound on the lifetime of neutrinoless double-beta (0νββ0\nu\beta\beta) decay in 130^{130}Te and the associated limit on the effective Majorana mass of the neutrino using the CUORE-0 detector. CUORE-0 is a bolometric detector array located at the Laboratori Nazionali del Gran Sasso that was designed to validate the background reduction techniques developed for CUORE, a next-generation experiment scheduled to come online in 2016. CUORE-0 is also a competitive 0νββ0\nu\beta\beta decay search in its own right and functions as a platform to further develop the analysis tools and procedures to be used in CUORE. These include data collection, event selection and processing, as well as an evaluation of signal efficiency. In particular, we describe the amplitude evaluation, thermal gain stabilization, energy calibration methods, and the analysis event selection used to create our final 0νββ0\nu\beta\beta decay search spectrum. We define our high level analysis procedures, with emphasis on the new insights gained and challenges encountered. We outline in detail our fitting methods near the hypothesized 0νββ0\nu\beta\beta decay peak and catalog the main sources of systematic uncertainty. Finally, we derive the 0νββ0\nu\beta\beta decay half-life limits previously reported for CUORE-0, T1/20ν>2.7×1024T^{0\nu}_{1/2}>2.7\times10^{24} yr, and in combination with the Cuoricino limit, T1/20ν>4.0×1024T^{0\nu}_{1/2}>4.0\times10^{24} yr.Comment: 18 pages, 18 figures. (Version 3 reflects only minor changes to the text. Few additional details, no major content changes.

    CUORE-0 results and prospects for the CUORE experiment

    Full text link
    With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory for Rare Events) experiment aims at searching for neutrinoless double beta decay of 130Te with unprecedented sensitivity. Expected to start data taking in 2015, CUORE is currently in an advanced construction phase at LNGS. CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1 sigma (9.5E25 y at the 90% confidence level), in five years of live time, corresponding to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric detectors could improve CUORE sensitivity and competitiveness of bolometric detectors towards a full analysis of the inverted neutrino mass hierarchy. CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g each, arranged in a 13 floor structure) constructed strictly following CUORE recipes both for materials and assembly procedures. An experiment its own, CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta decay half-life of 130Te around 3E24 y in one year of live time. We present an update of the data, corresponding to an exposure of 18.1 kg y. An analysis of the background indicates that the CUORE performance goal is satisfied while the sensitivity goal is within reach.Comment: 10 pages, 3 figures, to appear in the proceedings of NEUTRINO 2014, 26th International Conference on Neutrino Physics and Astrophysics, 2-7 June 2014, held at Boston, Massachusetts, US

    Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments

    Get PDF
    CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/keV/kg/y will be reached, in five years of data taking CUORE will have a 1 sigma half life sensitivity of 10E26 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.Comment: 7 pages, 4 figures, to be published in the proceedings of ICHEP 2014, 37th International Conference on High Energy Physics, Valencia (Spain) 2-9 July 201

    Measurement of the Two-Neutrino Double Beta Decay Half-life of 130^{130}Te with the CUORE-0 Experiment

    Get PDF
    We report on the measurement of the two-neutrino double beta decay half-life of 130^{130}Te with the CUORE-0 detector. From an exposure of 33.4 kg\cdoty of TeO2_2, the half-life is determined to be T1/22νT_{1/2}^{2\nu} = [8.2 ±\pm 0.2 (stat.) ±\pm 0.6 (syst.)] ×\times 1020^{20}y. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the 130^{130}Te neutrinoless double beta decay region of interest.Comment: Corrected typo in section 9: 3.43E5 Bq/kg should have read 3.43E-5 Bq/k

    First measurement of the strange axial coupling constant using neutral-current quasi-elastic interactions of atmospheric neutrinos at KamLAND

    Full text link
    We report a measurement of the strange axial coupling constant gAsg_A^s using atmospheric neutrino data at KamLAND. This constant is a component of the axial form factor of the neutral current quasi-elastic (NCQE) interaction. The value of gAsg_A^s significantly changes the ratio of proton and neutron NCQE cross sections. KamLAND is suitable for measuring NCQE interactions as it can detect nucleon recoils with low energy thresholds and measure neutron multiplicity with high efficiency. KamLAND data, including the information on neutron multiplicity associated with the NCQE interactions, makes it possible to measure gAsg_A^s with a suppressed dependence on the axial mass MAM_A, which has not yet been determined. For a comprehensive prediction of the neutron emission associated with neutrino interactions, we establish a simulation of particle emission via nuclear de-excitation of 12^{12}C, a process not considered in existing neutrino Monte Carlo event generators. Energy spectrum fitting for each neutron multiplicity gives gAs=0.140.26+0.25g_A^s =-0.14^{+0.25}_{-0.26}, which is the most stringent limit obtained using NCQE interactions without MAM_A constraints

    Measurement of cosmic-ray muon spallation products in a xenon-loaded liquid scintillator with KamLAND

    Full text link
    Cosmic-ray muons produce various radioisotopes when passing through material. These spallation products can be backgrounds for rare event searches such as in solar neutrino, double-beta decay, and dark matter search experiments. The KamLAND-Zen experiment searches for neutrinoless double-beta decay in 745kg of xenon dissolved in liquid scintillator. The experiment includes dead-time-free electronics with a high efficiency for detecting muon-induced neutrons. The production yields of different radioisotopes are measured with a combination of delayed coincidence techniques, newly developed muon reconstruction and xenon spallation identification methods. The observed xenon spallation products are consistent with results from the FLUKA and Geant4 simulation codes

    KamLAND's search for correlated low-energy electron antineutrinos with astrophysical neutrinos from IceCube

    Get PDF
    We report the results of a search for MeV-scale astrophysical neutrinos in KamLAND presented as an excess in the number of coincident neutrino interactions associated with the publicly available high-energy neutrino datasets from the IceCube Neutrino Observatory. We find no statistically significant excess in the number of observed low-energy electron antineutrinos in KamLAND, given a coincidence time window of ±\pm500s, ±\pm1,000s, ±\pm3,600s, and ±\pm10,000s around each of the IceCube neutrinos. We use this observation to present limits from 1.8 MeV to 100 MeV on the electron antineutrino fluence, assuming a mono-energetic flux. We then compare the results to several astrophysical measurements performed by IceCube and place a limit at the 90% confidence level on the electron antineutrino isotropic thermal luminosity from the TXS 0506+056 blazar.Comment: 12 pages, 5 figure
    corecore