259 research outputs found
On the Structure and Stabilization Mechanisms of Planar and Cylindrical Premixed Flames
The configurational simplicity of the stationary one-dimensional flames renders them intrinsically attractive for fundamental flame structure studies. The possibility and fidelity of studies of such flames on earth, however, have been severely restricted by the unidirectional nature of the gravity vector. To demonstrate these complications, let us first consider the premixed flame. Here a stationary, one-dimensional flame can be established by using the flat-flame burner. We next consider nonpremixed flames. First it may be noted that in an unbounded gravity-free environment, the only stationary one-dimensional flame is the spherical flame. Indeed, this is a major motivation for the study of microgravity droplet combustion, in which the gas-phase processes can be approximated to be quasi-steady because of the significant disparity between the gas and liquid densities for subcritical combustion. In view of the above considerations, an experimental and theoretical program on cylindrical and spherical premixed and nonpremixed flames in microgravity has been initiated. For premixed flames, we are interested in: (1) assessing the heat loss versus flow divergence as the dominant stabilization mechanism; (2) determining the laminar flame speed by using this configuration; and (3) understanding the development of flamefront instability and the effects of the flame curvature on the burning intensity
On burner-stabilized cylindrical premixed flames in microgravity
An experimental and theoretical program on cylindrical and spherical premixed flames in microgravity has been initiated. We are especially interested in: (1) assessing heat loss versus flow divergence as the dominant stabilization mechanism; (2) understanding the effects of flame curvature on the burning intensity; and (3) determining the laminar burning velocity by using this configuration. In the present study we have performed analytical, computational, and mu g-experimental investigations of the cylindrical flame. The results are presented
Anisotropic magnetoresistance in nanocontacts
We present ab initio calculations of the evolution of anisotropic
magnetoresistance (AMR) in Ni nanocontacts from the ballistic to the tunnel
regime. We find an extraordinary enhancement of AMR, compared to bulk, in two
scenarios. In systems without localized states, like chemically pure break
junctions, large AMR only occurs if the orbital polarization of the current is
large, regardless of the anisotropy of the density of states. In systems that
display localized states close to the Fermi energy, like a single electron
transistor with ferromagnetic electrodes, large AMR is related to the variation
of the Fermi energy as a function of the magnetization direction.Comment: 7 pages, 4 figures; revised for publication, new figures in greyscal
Supercurrent transferring through c-axis cuprate Josephson junctions with thick normal-metal-bridge
With simple but exactly solvable model, we investigate the supercurrent
transferring through the c-axis cuprate superconductor-normal
metal-superconductor junctions with the clean normal metal much thicker than
its coherence length. It is shown that the supercurrent as a function of
thickness of the normal metal decreases much slower than the exponential
decaying expected by the proximity effect. The present result may account for
the giant proximity effect observed in the c-axis cuprate SNS junctions.Comment: 6 pages, 4 figure
Proximity Effect Enhancement Induced by Roughness of SN Interface
Critical temperature reduction is considered for a thin film of
a layered superconductor (S) with a rough surface covered by a thick layer of a
normal metal (N). The roughness of the SN interface increases the penetration
of electrons from the normal metal into the superconductor and leads to an
enhancement of the proximity effect. The value of induced by the
roughness of the SN interface can be much higher than for a film
with a plain surface for an extremely anisotropic layered superconductor with
the coherence lengths .Comment: 2 page
Orbital contribution to the magnetic properties of iron as a function of dimensionality
The orbital contribution to the magnetic properties of Fe in systems of
decreasing dimensionality (bulk, surfaces, wire and free clusters) is
investigated using a tight-binding hamiltonian in an and atomic
orbital basis set including spin-orbit coupling and intra-atomic electronic
interactions in the full Hartree-Fock (HF) scheme, i.e., involving all the
matrix elements of the Coulomb interaction with their exact orbital dependence.
Spin and orbital magnetic moments and the magnetocrystalline anisotropy energy
(MAE) are calculated for several orientations of the magnetization. The results
are systematically compared with those of simplified hamiltonians which give
results close to those obtained from the local spin density approximation. The
full HF decoupling leads to much larger orbital moments and MAE which can reach
values as large as 1 and several tens of meV, respectively, in the
monatomic wire at the equilibrium distance. The reliability of the results
obtained by adding the so-called Orbital Polarization Ansatz (OPA) to the
simplified hamiltonians is also discussed. It is found that when the spin
magnetization is saturated the OPA results for the orbital moment are in
qualitative agreement with those of the full HF model. However there are large
discrepancies for the MAE, especially in clusters. Thus the full HF scheme must
be used to investigate the orbital magnetism and MAE of low dimensional
systems
Magnetic moments of W 5d in Ca2CrWO6 and Sr2CrWO6 double perovskites
We have investigated the magnetic moment of the W ion in the ferrimagnetic
double perovskites Sr2CrWO6 and Ca2CrWO6 by X-ray magnetic circular dichroism
(XMCD) at the W L(2,3) edges. In both compounds a finite negative spin and
positive orbital magnetic moment was detected. The experimental results are in
good agreement with band-structure calculations for (Sr/Ca)2CrWO6 using the
full-potential linear muffin-tin orbital method. It is remarkable, that the
magnetic ordering temperature, TC, is correlated with the magnetic moment at
the 'non-magnetic' W atom.Comment: accepted for publicatio
Electronic Configuration of Yb Compounds
The total energy differences between divalent and trivalent configurations of Yb ions in a number of Yb compounds are studied. Two different band theoretical methods, which differ in the treatment of the localized f electrons, are used. The results show that in all Yb compounds the valence energy differences are equal to the energy needed to localize an f electron. These valence energy differences correlate with the number of f electrons hybridizing with the conduction bands in the trivalent configuration. For divalent YbS, the pressure induced f-electron delocalization implies an intermediate valency, as also indicated by experiment
High photon energy spectroscopy of NiO: experiment and theory
We have revisited the valence band electronic structure of NiO by means of
hard x-ray photoemission spectroscopy (HAXPES) together with theoretical
calculations using both the GW method and the local density approximation +
dynamical mean-field theory (LDA+DMFT) approaches. The effective impurity
problem in DMFT is solved through the exact diagonalization (ED) method. We
show that the LDA+DMFT method alone cannot explain all the observed structures
in the HAXPES spectra. GW corrections are required for the O bands and Ni-s and
p derived states to properly position their binding energies. Our results
establish that a combination of the GW and DMFT methods is necessary for
correctly describing the electronic structure of NiO in a proper ab-initio
framework. We also demonstrate that the inclusion of photoionization cross
section is crucial to interpret the HAXPES spectra of NiO.We argue that our
conclusions are general and that the here suggested approach is appropriate for
any complex transition metal oxide.Comment: 16 pages, 5 figure
- …