11 research outputs found
Effects of nutrient loading on sediment bacterial and pathogen communities within seagrass meadows
Eutrophication can play a significant role in seagrass decline and habitat loss. Microorganisms in seagrass sediments are essential to many important ecosystem processes, including nutrient cycling and seagrass ecosystem health. However, current knowledge of the bacterial communities, both beneficial and detrimental, within seagrass meadows in response to nutrient loading is limited. We studied the response of sediment bacterial and pathogen communities to nutrient enrichment on a tropical seagrass meadow in Xincun Bay, South China Sea. The bacterial taxonomic groups across all sites were dominated by the Gammaproteobacteria and Firmicutes. Sites nearest to the nutrient source and with the highest NH4+ and PO43− content had approximately double the relative abundance of putative denitrifiers Vibrionales, Alteromonadales, and Pseudomonadales. Additionally, the relative abundance of potential pathogen groups, especially Vibrio spp. and Pseudoalteromonas spp., was approximately 2âfold greater at the sites with the highest nutrient loads compared to sites further from the source. These results suggest that proximity to sources of nutrient pollution increases the occurrence of potential bacterial pathogens that could affect fishes, invertebrates and humans. This study shows that nutrient enrichment does elicit shifts in bacterial community diversity and likely their function in local biogeochemical cycling and as a potential source of infectious diseases within seagrass meadows
DNA barcoding of marine fish species in the waters surrounding Hainan Island, northern South China Sea
IntroductionHainan Island is encompassed within the shallow waters of the tropical continental shelf in China, which is recognized as a significant hotspot for fish biodiversity. Despite extensive research conducted on marine fish taxonomy surrounding Hainan Island, there remains a substantial gap between our current understanding and the actual fish diversity within this oceanic area.MethodsIn this study, we employed DNA barcoding and molecular identification approaches to explore the species diversity and distribution pattern of marine fish in both the northern and southern sea areas of Hainan Island in the northern South China Sea.ResultsA total of 186 sequences were obtained from the collected marine fish samples in the two sea areas surrounding Hainan Island. Through DNA identification, it was confirmed that all 186 sequences corresponded to typical fish species found in the northern South China Sea, all sequences represented a total of 56 species, 47 genera, 34 families, and 17 orders. The average Kimura 2-parameter (K2P) distances within species, genus, family, order and class were 0.15%, 6.53%, 13.17%, 16.95% and 24.81%, respectively.DiscussionOur investigation in the northern sea areas of Hainan Islands identified a total of 33 distinct species, while the southern sea areas exhibited 29 distinct species, with only 5 species found to be shared between both regions. These findings clearly indicate a significant disparity in the species composition of fish communities between the northern and southern sea regions
The complete mitochondrial genome of middle-sized form of Sthenoteuthis oualaniensis (Cephalopoda: Ommastrephidae) from the South China Sea
The purpleback flying squid (Sthenoteuthis oualaniensis) is a pelagic squid with tremendous potential for commercial exploitation. Sthenoteuthis oualaniensis comprises two forms in the South China Sea, medium-sized form and dwarf form. In this study, we described the complete mitochondrial genome of medium-sized form of S. oualaniensis. The genome is 20,309âbp in length, encoding the standard set of 13 protein-coding genes, 20 tRNA genes, and two rRNA genes, with circular organization. The overall base composition of the whole mitochondrial genome was A (35.86%), T (33.36%), G (11.63%), and C (19.15%) with an AT bias of 69.22%. The longest protein-coding gene of these species was ND5, whereas the shortest ATP8
Genome sequence of a tigecycline-resistant Acinetobacter seifertii recovered in human bloodstream infection in China
ABSTRACT: Objectives: The phylogenetic characteristics of Acinetobacter seifertii clinical strain are not well-studied. Here, we reported one tigecycline-resistant ST1612Pasteur A. seifertii isolated from bloodstream infections (BSI) in China. Methods: Antimicrobial susceptibility tests were conducted via broth microdilution. Whole-genome sequencing (WGS) was performed and annotation was conducted using rapid annotations subsystems technology (RAST) server. Multilocus sequence typing (MLST), capsular polysaccharide (KL), and lipoolygosaccharide (OCL) were analysed using PubMLST and Kaptive. Resistance genes, virulence factors, and comparative genomics analysis were performed. Cloning, mutations of efflux pump-related genes, and expression level were further investigated. Results: The draft genome sequence of A. seifertii ASTCM strain is made up of 109 contigs with a total length of 4,074,640 bp. Based on the RAST results, 3923 genes that belonged to 310 subsystems were annotated. Acinetobacter seifertii ASTCM was ST1612Pasteur with KL26 and OCL4, respectively. It was resistant to gentamicin and tigecycline. ASTCM harboured tet(39), sul2, and msr(E)-mph(E), and one amino acid mutation in Tet(39) (T175A) was further identified. Nevertheless, the signal mutation failed to contribute to susceptibility change of tigecycline. Of note, several amino acid substitutions were identified in AdeRS, AdeN, AdeL, and Trm, which could lead to overexpression of adeB, adeG, and adeJ efflux pump genes and further possibly lead to tigecycline resistance. Phylogenetic analysis showed that a huge diversity was observed among A. seifertii strains based on 27â52,193 SNPs difference. Conclusion: In summary, we reported a tigecycline-resistant ST1612Pasteur A. seifertii in China. Early detection is recommended to prevent their further spread in clinical settings
The complete mitochondrial genome of the tropical oyster Saccostrea echinata (Bivalvia: Ostreidae) from the South China Sea
Saccostrea echinata is a rock perched oyster with wide distribution and tremendous potential for commercial mariculture. However, the taxonomy of this genus is confused. In this study, we described the complete mitochondrial genome of medium-sized form of Saccostrea echinata. The genome is 16,282âbp in length, encoding the standard set of 12 protein-coding genes (PCGs), 23 tRNA genes, and two rRNA genes, with circular organization. The overall base composition of the whole mitochondrial genome was A (26.78%), T (36.64%), G (21.99%), and C (14.59%) with an AT bias of 63.42%. The longest PCG of these species was ND5, whereas the shortest was ND4L