730 research outputs found

    Discovery of very nearby ultracool dwarfs from DENIS

    Full text link
    We report new spectroscopic results, obtained with UKIRT/CGS4, of a sample of 14 candidate ultracool dwarfs selected from the DENIS (Deep Near-Infrared Survey of the Southern Sky) database. A further object, selected from the 2MASS Second Incremental Release, was observed at a later epoch with the same instrument. Six objects are already known in the literature; we re-derive their properties. A further four prove to be very nearby (~10 pc) mid-to-late L-dwarfs, three unknown hitherto, two of which are almost certainly substellar. These findings increase the number of L-dwarfs known within ~10 pc by ~25%. The remainder of the objects discussed here are early L or very late M-type dwarfs lying between ~45 and 15 pc and are also new to the literature. Spectral types have been derived by direct comparison with J-,H- and K- band spectra of known template ultracool dwarfs given by Leggett et al. (ftp://ftp.jach.hawaii.edu/pub/ukirt/skl/dL.spectra/) For the known objects, we generally find agreement to within ~1 subclass with previously derived spectral types. Distances are determined from the most recent M_J vs. spectral type calibrations, and together with our derived proper motions yield kinematics for most targets consistent with that expected for the disk population; for three probable late M-dwarfs, membership of a dynamically older population is postulated. The very nearby L-type objects discussed here are of great interest for future studies of binarity and parallaxes.Comment: 4 pages, 2 figures, accepted in A&A Letter

    Spectroscopic Binary Mass Determination using Relativity

    Get PDF
    High-precision radial-velocity techniques, which enabled the detection of extrasolar planets are now sensitive to relativistic effects in the data of spectroscopic binary stars (SBs). We show how these effects can be used to derive the absolute masses of the components of eclipsing single-lined SBs and double-lined SBs from Doppler measurements alone. High-precision stellar spectroscopy can thus substantially increase the number of measured stellar masses, thereby improving the mass-radius and mass-luminosity calibrations.Comment: 10 pages, 1 figure, accepted for publication by the Astrophysical Journal Letter

    A Dedicated M-Dwarf Planet Search Using The Hobby-Eberly Telescope

    Full text link
    We present first results of our planet search program using the 9.2 meter Hobby-Eberly Telescope (HET) at McDonald Observatory to detect planets around M-type dwarf stars via high-precision radial velocity (RV) measurements. Although more than 100 extrasolar planets have been found around solar-type stars of spectral type F to K, there is only a single M-dwarf (GJ 876, Delfosse et al. 1998; Marcy et al. 1998; Marcy et al. 2001) known to harbor a planetary system. With the current incompleteness of Doppler surveys with respect to M-dwarfs, it is not yet possible to decide whether this is due to a fundamental difference in the formation history and overall frequency of planetary systems in the low-mass regime of the Hertzsprung-Russell diagram, or simply an observational bias. Our HET M-dwarf survey plans to survey 100 M-dwarfs in the next 3 to 4 years with the primary goal to answer this question. Here we present the results from the first year of the survey which show that our routine RV-precision for M-dwarfs is 6 m/s. We found that GJ 864 and GJ 913 are binary systems with yet undetermined periods, while 5 out of 39 M-dwarfs reveal a high RV-scatter and represent candidates for having short-periodic planetary companions. For one of them, GJ 436 (rms = 20.6 m/s), we have already obtained follow-up observations but no periodic signal is present in the RV-data.Comment: 12 pages, 14 figures, accepted for publication in the Astronomical Journa

    The Big Occulting Steerable Satellite (BOSS)

    Get PDF
    Natural (such as lunar) occultations have long been used to study sources on small angular scales, while coronographs have been used to study high contrast sources. We propose launching the Big Occulting Steerable Satellite (BOSS), a large steerable occulting satellite to combine both of these techniques. BOSS will have several advantages over standard occulting bodies. BOSS would block all but about 4e-5 of the light at 1 micron in the region of interest around the star for planet detections. Because the occultation occurs outside the telescope, scattering inside the telescope does not degrade this performance. BOSS could be combined with a space telescope at the Earth-Sun L2 point to yield very long integration times, in excess of 3000 seconds. If placed in Earth orbit, integration times of 160--1600 seconds can be achieved from most major telescope sites for objects in over 90% of the sky. Applications for BOSS include direct imaging of planets around nearby stars. Planets separated by as little as 0.1--0.25 arcseconds from the star they orbit could be seen down to a relative intensity as little as 1e-9 around a magnitude 8 (or brighter) star. Other applications include ultra-high resolution imaging of compound sources, such as microlensed stars and quasars, down to a resolution as little as 0.1 milliarcseconds.Comment: 25pages, 4 figures, uses aaspp4, rotate, and epsfig. Submitted to the Astrophysical Journal. For more details see http://erebus.phys.cwru.edu/~boss

    The HARPS search for southern extra-solar planets. VI. A Neptune-mass planet around the nearby M dwarf Gl 581

    Full text link
    We report the discovery of a Neptune-mass planet around Gl 581 (M3V, M = 0.31 Msol), based on precise Doppler measurements with the HARPS spectrograph at La Silla Observatory. The radial velocities reveal a circular orbit of period P = 5.366 days and semi-amplitude K1 = 13.2 m/s. The resulting minimum mass of the planet (m2 sin i) is only 0.052 Mjup = 0.97 Mnep = 16.6 Mearth making Gl 581b one of the lightest extra-solar planet known to date. The Gl 581 planetary system is only the third centered on an M dwarf, joining the Gl 876 three-planet system and the lone planet around Gl 436. Its discovery reinforces the emerging tendency of such planets to be of low mass, and found at short orbital periods. The statistical properties of the planets orbiting M dwarfs do not seem to match a simple mass scaling of their counterparts around solar-type stars.Comment: letter submitted to A&

    Metallicity of M dwarfs IV. A high-precision [Fe/H] and Teff technique from high-resolution optical spectra for M dwarfs

    Full text link
    Aims. In this work we develop a technique to obtain high precision determinations of both metallicity and effective temperature of M dwarfs in the optical. Methods. A new method is presented that makes use of the information of 4104 lines in the 530-690 nm spectral region. It consists in the measurement of pseudo equivalent widths and their correlation with established scales of [Fe/H] and TeffT_{eff}. Results. Our technique achieves a rmsrms of 0.08±\pm0.01 for [Fe/H], 91±\pm13 K for TeffT_{eff}, and is valid in the (-0.85, 0.26 dex), (2800, 4100 K), and (M0.0, M5.0) intervals for [Fe/H], TeffT_{eff} and spectral type respectively. We also calculated the RMSEV_{V} which estimates uncertainties of the order of 0.12 dex for the metallicity and of 293 K for the effective temperature. The technique has an activity limit and should only be used for stars with logLHα/Lbol<4.0\log{L_{H_{\alpha}}/L_{bol}} < -4.0. Our method is available online at \url{http://www.astro.up.pt/resources/mcal}.Comment: Accepted in Astronomy and Astrophysics. Updated one important reference in the introduction. Some typos correcte
    corecore