80 research outputs found

    Continuous counter-current affinity colloidal purification

    Get PDF
    Please click Additional Files below to see the full abstract

    A truly continuous counter-current downstream

    Get PDF
    Please click Additional Files below to see the full abstract

    A Common Framework for Integrated and Continuous Biomanufacturing

    Get PDF
    There is a growing application of integrated and continuous bioprocessing (ICB) for manufacturing recombinant protein therapeutics produced from mammalian cells. At first glance, the newly evolved ICB has created a vast diversity of platforms. A closer inspection reveals convergent evolution: nearly all of the major ICB methods have a common framework that could allow manufacturing across a global ecosystem of manufacturers using simple, yet effective, equipment designs. The framework is capable of supporting the manufacturing of most major biopharmaceutical ICB and legacy processes without major changes in the regulatory license. This article is protected by copyright. All rights reserved

    n-Hexadecane hydrocracking Single-Event MicroKinetics on Pt/H-beta

    Full text link
    [EN] The Single-Event MicroKinetic (SEMK) model constructed for gas-phase hydroconversion of light n-alkanes on large-pore USY zeolites was applied, for the first time, to the hydrocracking of n-hexadecane on a Pt/H-Beta catalyst. Despite the 12-ringed pore channels, shape selectivity was observed in the formation of ethyl side chains. Additionally, heavy feed molecules such as n-hexadecane lead to physisorption saturation of the catalyst pores by strong Van der Waals interactions of the long alkyl chains with the zeolite framework. Intermolecular interactions and packing efficiencies in the pores induce deviations from typical Henry-regime physisorption characteristics as the physisorption selectivity, which is expected to increase with increasing carbon number, appeared to be independent of the latter. Micropore saturation effects were described by the 'size entropy' which quantifies the difference in standard entropy loss between physisorption in the Henry regime and hindered physisorption on a saturated surface. The size entropy is proportional to the catalyst loading with physisorbed species and the adsorbate carbon number. The addition of a size entropy term in the SEMK model, amounting to 102J mol(-1) K-1 for a hexadecane molecule at full saturation, allowed accurately reproducing the contribution of secondary isomerization and cracking reactions, as quantified by means of a contribution analysis. (C) 2012 Elsevier B.V. All rights reserved.This work was funded by the European Research Institute of Catalysis and the European Community’s Sixth Framework Programme. This work was also supported by the Research Board of Ghent University (BOF), the Interuniversity Attraction Poles Programme–Belgian State–Belgian Science Policy and the Long Term Structural Methusalem Funding by the Flemish Government. Financial support by the Comisión Interministerial de Ciencia y Tecnología (CICYT) of Spain through the Project CTQ2010-17988/PPQ is also gratefully acknowledged.Vandegehuchte, BD.; Thybaut, JW.; Martinez Feliu, A.; Arribas Viana, MDLD.; Marin, GB. (2012). n-Hexadecane hydrocracking Single-Event MicroKinetics on Pt/H-beta. Applied Catalysis A General. 441:10-20. doi:10.1016/j.apcata.2012.06.054S102044
    corecore