407 research outputs found

    Synthesis of hollow vaterite CaCO(3) microspheres in supercritical carbon dioxide medium

    Get PDF
    We here describe a rapid method for synthesizing hollow core, porous crystalline calcium carbonate microspheres composed of vaterite using supercritical carbon dioxide in aqueous media, without surfactants. We show that the reaction in alkaline media rapidly conducts to the formation of microspheres with an average diameter of 5 mu m. SEM, TEM and AFM observations reveal that the microspheres have a hollow core of around 0.7 mu m width and are composed of nanograins with an average diameter of 40 nm. These nanograins are responsible for the high specific surface area of 16 m(2) g(-1) deduced from nitrogen absorption/desorption isotherms, which moreover confers an important porosity to the microspheres. We believe this work may pave the way for the elaboration of a biomaterial with a large potential for therapeutic as well as diagnostic applications

    The onset and growth of the 2018 Martian Global Dust Storm

    Get PDF
    We analyze the onset and initial expansion of the 2018 Martian Global Dust Storm (GDS 2018) using ground-based images in the visual range. This is the first case of a confirmed GDS initiating in the Northern Hemisphere. A dusty area extending about 1.4x10e5 km^2 and centered at latitude +31.7{\deg} ±\pm 1.8{\deg} and west longitude 18{\deg} ±\pm 5{\deg}W in Acidalia Planitia was captured on 30 and 31 May 2018 (Ls = 184.9{\deg}). From 1 to 8 June, daily image series showed the storm expanding southwards along the Acidalia corridor with velocities of 5 m/s, and simultaneously progressing eastwards and westwards with horizontal velocities ranging from 5 to 40 m/s. By 8 June the dust reached latitude -55{\deg} and later penetrated in the South polar region, whereas in the North the dust progression stopped at latitude +46{\deg}. We compare the onset and expansion stage of this GDS with the previous confirmed storms.Comment: Accepted in Geophysical Research Letters. Main article and Supporting Informatio

    A complex storm system in Saturn’s north polar atmosphere in 2018

    Get PDF
    Producción CientíficaSaturn’s convective storms usually fall in two categories. One consists of mid-sized storms ∼2,000 km wide, appearing as irregular bright cloud systems that evolve rapidly, on scales of a few days. The other includes the Great White Spots, planetary-scale giant storms ten times larger than the mid-sized ones, which disturb a full latitude band, enduring several months, and have been observed only seven times since 1876. Here we report a new intermediate type, observed in 2018 in the north polar region. Four large storms with east–west lengths ∼4,000–8,000 km (the first one lasting longer than 200 days) formed sequentially in close latitudes, experiencing mutual encounters and leading to zonal disturbances affecting a full latitude band ∼8,000 km wide, during at least eight months. Dynamical simulations indicate that each storm required energies around ten times larger than mid-sized storms but ∼100 times smaller than those necessary for a Great White Spot. This event occurred at about the same latitude and season as the Great White Spot in 1960, in close correspondence with the cycle of approximately 60 years hypothesized for equatorial Great White Spots.Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (project AYA2015-65041-P)Gobierno Vasco (project IT-366-19

    Overview of Saturn lightning observations

    Get PDF
    The lightning activity in Saturn's atmosphere has been monitored by Cassini for more than six years. The continuous observations of the radio signatures called SEDs (Saturn Electrostatic Discharges) combine favorably with imaging observations of related cloud features as well as direct observations of flash-illuminated cloud tops. The Cassini RPWS (Radio and Plasma Wave Science) instrument and ISS (Imaging Science Subsystem) in orbit around Saturn also received ground-based support: The intense SED radio waves were also detected by the giant UTR-2 radio telescope, and committed amateurs observed SED-related white spots with their backyard optical telescopes. Furthermore, the Cassini VIMS (Visual and Infrared Mapping Spectrometer) and CIRS (Composite Infrared Spectrometer) instruments have provided some information on chemical constituents possibly created by the lightning discharges and transported upward to Saturn's upper atmosphere by vertical convection. In this paper we summarize the main results on Saturn lightning provided by this multi-instrumental approach and compare Saturn lightning to lightning on Jupiter and Earth.Comment: 10 pages, 6 figures, 2 tables; Proc. PRE VII conference Graz Sept. 201

    ENSO indices from sea surface salinity observed by Aquarius and Argo

    Full text link
    Analysis of the first 26 months of data from the Aquarius satellite confirms the existence of a sharp sea surface salinity (SSS) front along the equator in the western equatorial Pacific. Following several earlier studies, we use the longitudinal location of the 34.8-psu isohaline as an index, termed Niño-S34.8, to measure the zonal displacement of the SSS front and consequently the eastern edge of the western Pacific warm pool. The on-going collection of the Array for Real-time Geostrophic Oceanography (ARGO) program data shows high correlations between Niño-S34.8 and the existing indices of El Niño, suggesting its potential important role in ENSO evolution. Further analysis of the ARGO data reveals that SSS variability in the southeastern tropical Pacific is crucial to identify the type of El Niño. A new SSS index, termed the southeastern Pacific SSS index (SEPSI), is defined based on the SSS variability in the region (0°-10°S, 150°-90°W). The SEPSI is highly correlated with the El Niño Modoki index, as well as the Trans-Niño index, introduced by previous studies. It has large positive anomalies during central Pacific El Niño or El Niño Modoki events, as a result of enhanced zonal sea surface temperature gradients between the central and eastern tropical Pacific, and can be used to characterize the type of El Niño. The processes that possibly control these SSS indices are also discussed. © 2014 The Oceanographic Society of Japan and Springer Japan
    corecore