5,851 research outputs found

    Selective gas phase hydrogenation of nitroarenes over Mo2C-supported Au–Pd

    Get PDF
    Open Access via RSC Gold 4 Gold Financial support to Dr. X. Wang through the Overseas Research Students Award Scheme (ORSAS) is acknowledged. Dr. N. Perret also acknowledges financial support from COST Action MP0903 Nanoalloys.Peer reviewedPublisher PD

    Understanding the production of dual BEC with sympathetic cooling

    Full text link
    We show, both experimentally and theoretically, that sympathetic cooling of 87^{87}Rb atoms in the F=2,mF=2>|F=2,m_F=2> state by evaporatively cooled atoms in the F=1,mF=1>|F=1,m_F=-1> state can be precisely controlled to produce dual or single condensate in either state. We also study the thermalization rate between two species. Our model renders a quantitative account of the observed role of the overlap between the two clouds and points out that sympathetic cooling becomes inefficient when the masses are very different. Our calculation also yields an analytical expression of the thermalization rate for a single species.Comment: 3 figure

    Revisiting the STEC Testing Approach: Using espK and espV to Make Enterohemorrhagic Escherichia coli (EHEC) Detection More Reliable in Beef

    Get PDF
    Current methods for screening Enterohemorrhagic Escherichia coli (EHEC) O157 and non-O157 in beef enrichments typically rely on the molecular detection of stx, eae, and serogroup-specific wzx or wzy gene fragments. As these genetic markers can also be found in some non-EHEC strains, a number of “false positive” results are obtained. Here, we explore the suitability of five novel molecular markers, espK, espV, ureD, Z2098, and CRISPRO26:H11 as candidates for a more accurate screening of EHEC strains of greater clinical significance in industrialized countries. Of the 1739 beef enrichments tested, 180 were positive for both stx and eae genes. Ninety (50%) of these tested negative for espK, espV, ureD, and Z2098, but 12 out of these negative samples were positive for the CRISPRO26:H11 gene marker specific for a newly emerging virulent EHEC O26:H11 French clone. We show that screening for stx, eae, espK, and espV, in association with the CRISPRO26:H11 marker is a better approach to narrow down the EHEC screening step in beef enrichments. The number of potentially positive samples was reduced by 48.88% by means of this alternative strategy compared to the European and American reference methods, thus substantially improving the discriminatory power of EHEC screening systems. This approach is in line with the EFSA (European Food Safety Authority) opinion on pathogenic STEC published in 2013

    Revisiting the STEC Testing Approach: Using espK and espV to Make Enterohemorrhagic Escherichia coli (EHEC) Detection More Reliable in Beef

    Get PDF
    Current methods for screening Enterohemorrhagic Escherichia coli (EHEC) O157 and non-O157 in beef enrichments typically rely on the molecular detection of stx, eae, and serogroup-specific wzx or wzy gene fragments. As these genetic markers can also be found in some non-EHEC strains, a number of “false positive” results are obtained. Here, we explore the suitability of five novel molecular markers, espK, espV, ureD, Z2098, and CRISPRO26:H11 as candidates for a more accurate screening of EHEC strains of greater clinical significance in industrialized countries. Of the 1739 beef enrichments tested, 180 were positive for both stx and eae genes. Ninety (50%) of these tested negative for espK, espV, ureD, and Z2098, but 12 out of these negative samples were positive for the CRISPRO26:H11 gene marker specific for a newly emerging virulent EHEC O26:H11 French clone. We show that screening for stx, eae, espK, and espV, in association with the CRISPRO26:H11 marker is a better approach to narrow down the EHEC screening step in beef enrichments. The number of potentially positive samples was reduced by 48.88% by means of this alternative strategy compared to the European and American reference methods, thus substantially improving the discriminatory power of EHEC screening systems. This approach is in line with the EFSA (European Food Safety Authority) opinion on pathogenic STEC published in 2013

    Neel order, ring exchange and charge fluctuations in the half-filled Hubbard model

    Full text link
    We investigate the ground state properties of the two dimensional half-filled one band Hubbard model in the strong (large-U) to intermediate coupling limit ({\it i.e.} away from the strict Heisenberg limit) using an effective spin-only low-energy theory that includes nearest-neighbor exchange, ring exchange, and all other spin interactions to order t(t/U)^3. We show that the operator for the staggered magnetization, transformed for use in the effective theory, differs from that for the order parameter of the spin model by a renormalization factor accounting for the increased charge fluctuations as t/U is increased from the t/U -> 0 Heisenberg limit. These charge fluctuations lead to an increase of the quantum fluctuations over and above those for an S=1/2 antiferromagnet. The renormalization factor ensures that the zero temperature staggered moment for the Hubbard model is a monotonously decreasing function of t/U, despite the fact that the moment of the spin Hamiltonien, which depends on transverse spin fluctuations only, in an increasing function of t/U. We also comment on quantitative aspects of the t/U and 1/S expansions.Comment: 9 pages - 3 figures - References and details to help the reader adde

    Uncertainty Quantification of GEOS-5 L-band Radiative Transfer Model Parameters Using Bayesian Inference and SMOS Observations

    Get PDF
    Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation opacity and scattering albedo for large-scale applications are difficult to obtain from field studies and often lack an uncertainty estimate. Here, a Markov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at a range of incidence angles, at horizontal and vertical polarization, and for morning and evening overpasses. Tb simulations are generated with the Goddard Earth Observing System (GEOS-5) and confronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS) mission. The MCMC algorithm suggests that the relative uncertainty of the RTM parameter estimates is typically less than 25 of the maximum a posteriori density (MAP) parameter value. Furthermore, the actual root-mean-square-differences in long-term Tb averages and standard deviations are found consistent with the respective estimated total simulation and observation error standard deviations of m3.1K and s2.4K. It is also shown that the MAP parameter values estimated through MCMC simulation are in close agreement with those obtained with Particle Swarm Optimization (PSO)

    Simulation of free surface and molten metal behavior during induction melting of an aluminium alloy

    No full text
    International audienceElectromagnetic forces are widely used for processing metal alloys in particular in the aluminium casting industry. Induction is used in melting technologies (both crucible and channel induction furnaces). Magnetic stirrers are also used in melting or casting furnaces. However these technologies applied to opaque melts require modelling to be done to understand the resultant impact on the fluid and improve the process control. This is especially the case of crucible induction furnaces. A 2D axially symmetric numerical model describing the coupled magnetohydrodynamic and free surface phenomena taking place in an induction metal bath has been developed. The model uses the Ansys Fluent software, supplemented with additional User Defined Functions for the calculation of the Lorentz forces acting on the metal. The calculation of the shape of the free surface is based on the Volume Of Fluid method and a RANS k-ω Shear Stress Transport (SST) approach is used to describe the turbulent stirring of the metal. An original feature of our model is the consideration of an oxide skin covering the metal free surface. It was considered that the oxide film behaves similarly to a deforming wall and that friction effects between the oxide film and the metal result in the development of a shear stress at the top surface of the melt. Two examples of application of model are reported, for lab scale and industrial scale induction furnaces. The lab scale results are compared with measurements of the free surface shape obtained using a fringe projection technique

    Sympathetic Cooling with Two Atomic Species in an Optical Trap

    Get PDF
    We simultaneously trap ultracold lithium and cesium atoms in an optical dipole trap formed by the focus of a CO2_2 laser and study the exchange of thermal energy between the gases. The cesium gas, which is optically cooled to 20μ20 \muK, efficiently decreases the temperature of the lithium gas through sympathetic cooling. The measured cross section for thermalizing 133^{133}Cs-7^7Li collisions is 8×10128 \times 10^{-12} cm2^2, for both species in their lowest hyperfine ground state. Besides thermalization, we observe evaporation of lithium purely through elastic cesium-lithium collisions (sympathetic evaporation).Comment: 4 pages 3 fig
    corecore