3,330 research outputs found

    Time Variability in the X-ray Nebula Powered by Pulsar B1509-58

    Full text link
    We use new and archival Chandra and ROSAT data to study the time variability of the X-ray emission from the pulsar wind nebula (PWN) powered by PSR B1509-58 on timescales of one week to twelve years. There is variability in the size, number, and brightness of compact knots appearing within 20" of the pulsar, with at least one knot showing a possible outflow velocity of ~0.6c (assuming a distance to the source of 5.2 kpc). The transient nature of these knots may indicate that they are produced by turbulence in the flows surrounding the pulsar. A previously identified prominent jet extending 12 pc to the southeast of the pulsar increased in brightness by 30% over 9 years; apparent outflow of material along this jet is observed with a velocity of ~0.5c. However, outflow alone cannot account for the changes in the jet on such short timescales. Magnetohydrodynamic sausage or kink instabilities are feasible explanations for the jet variability with timescale of ~1.3-2 years. An arc structure, located 30"-45" north of the pulsar, shows transverse structural variations and appears to have moved inward with a velocity of ~0.03c over three years. The overall structure and brightness of the diffuse PWN exterior to this arc and excluding the jet has remained the same over the twelve year span. The photon indices of the diffuse PWN and possibly the jet steepen with increasing radius, likely indicating synchrotron cooling at X-ray energies.Comment: accepted to ApJ, 14 pages, 8 figure

    Image states in metal clusters

    Get PDF
    The existence of image states in small clusters is shown, using a quantum-mechanical many-body approach. We present image state energies and wave functions for spherical jellium clusters up to 186 atoms, calculated in the GW approximation, where G is the Green's function and W is the dynamically screened Coulomb interaction, which by construction contains the dynamic long-range correlation effects that give rise to image effects. In addition, we find that image states are also subject to quantum confinement. To extrapolate our investigations to clusters in the mesoscopic size range, we propose a semiclassical model potential, which we test against our full GW results

    Scanning Electron Microscope Observations of Growth and Ochratoxin - A Production of Aspergillus alutaceus Variety alutaceus (Formerly A. ochraceus) on Gamma-Irradiated Barley

    Get PDF
    Scanning electron microscope examination, colony counting and biochemical studies were conducted to describe the effect of gammairradiation on growth and ochratoxin A production by Aspergillus alutaceus. Irradiation at a dose of 1.0 or 2.0 kGy reduced the level of mold growth greatly relative to unirradiated controls. Growth in the irradiated samples after 7 to 12 day incubation was mainly in cracks in the hull, and less mycelium was seen on the grain surface. In unirradiated controls, mycelial growth was heavy and, although conidial heads were most abundant in cracks in the hull, they were seen over the whole surface. Vhen the barley was inoculated before irradiation, the number of colony forming units (cfu) at 5 days after 1.0 or 2.0 kGy irradiation was lower than in the unirradiated controls; however, the number increased over the control by 30 days. A dose of 4.0 kGy eliminated viable fungi. Ochratoxin A production decreased from the control level of 17.6 ÎĽg/g with increased dose and was below the detection limit above 4.0 kGy. Vhen barley was inoculated after irradiation the spore count and the ochratoxin A level were higher than the unirradiated control after 27 days. We conclude that the difference in growth and ochratoxin A production on irradiated and unirradiated barley is due to the effect of irradiation on the natural competitive microflora on the grain surface and the reduction of inoculum size of the A. alutaceus by radiation

    Data-driven analytics to identify school absenteeism associated risk and protective factors for secondary school students

    Get PDF
    Chronic absenteeism (CA), defined as missing at least 15 school days/year, is recognized as a national problem in the U.S. with devastating long-term impacts for students. Previous studies have been guided by a mixture of diverse CA definitions and measurements which could potentially harm the applicability of findings. Despite the number of CA-associated factors identified, studies utilizing a unified theoretical system to a wide range of risk and protective factors has been scarce

    Modulation of SK Channel Trafficking by Beta Adrenoceptors Enhances Excitatory Synaptic Transmission and Plasticity in the Amygdala

    Get PDF
    Emotionally arousing events are particularly well remembered. This effect is known to result from the release of stress hormones and activation of beta adrenoceptors in the amygdala. However, the underlying cellular mechanisms are not understood. Small conductance calcium-activated potassium (SK) channels are present at glutamatergic synapses where they limit synaptic transmission and plasticity. Here, we show that beta adrenoceptor activation regulates synaptic SK channels in lateral amygdala pyramidal neurons, through activation of protein kinase A. We show that SK channels are constitutively recycled from the postsynaptic membrane and that activation of beta adrenoceptors removes SK channels from excitatory synapses. This results in enhanced synaptic transmission and plasticity. Our findings demonstrate a novel mechanism by which beta adrenoceptors control synaptic transmission and plasticity, through regulation of SK channel trafficking, and suggest that modulation of synaptic SK channels may contribute to beta adrenoceptor-mediated potentiation of emotional memories

    Orientational Melting in Carbon Nanotube Ropes

    Full text link
    Using Monte Carlo simulations, we investigate the possibility of an orientational melting transition within a "rope" of (10,10) carbon nanotubes. When twisting nanotubes bundle up during the synthesis, orientational dislocations or twistons arise from the competition between the anisotropic inter-tube interactions, which tend to align neighboring tubes, and the torsion rigidity that tends to keep individual tubes straight. We map the energetics of a rope containing twistons onto a lattice gas model and find that the onset of a free "diffusion" of twistons, corresponding to orientational melting, occurs at T_OM > 160 K.Comment: 4 page LaTeX file with 3 figures (10 PostScript files

    The Identification of Infrared Synchrotron Radiation from Cassiopeia A

    Full text link
    We report the discovery of polarized flux at 2.2 micron from the bright shell of the approximately 320 year old supernova remnant Cas A. The fractional polarizations are comparable at 6 cm and 2.2 micron, and the polarization angles are similar, demonstrating that synchrotron radiation from the same relativistic plasma is being observed at these widely separated wavebands. The relativistic electrons radiating at 2.2 micron have an energy of ~ 150 GeV, (gamma ~ 3e5), assuming an ~500 microGauss magnetic field. The total intensity at 2.2 micron lies close to the power law extrapolation from radio frequencies, showing that relativistic particle acceleration is likely an ongoing process; the infrared emitting electrons were accelerated no longer than ~80 years ago. There is a small but significant concave curvature to the spectrum, as expected if the accelerating shocks have been modified by the back pressure of the cosmic rays; given calibration uncertainties, this conclusion must be considered tentative at present. The 2.2 micron polarization angles and the emission-line filaments observed by HST are both offset from the local radial direction by 10 - 20 degrees, providing evidence that the magnetic fields in Cas A are generated by Rayleigh-Taylor instabilities in the decelerating ejecta.Comment: 11 pages, 3 figures, accepted for publication Ap

    Conductance of carbon nanotubes with disorder: A numerical study

    Full text link
    We study the conductance of carbon nanotube wires in the presence of disorder, in the limit of phase coherent transport. For this purpose, we have developed a simple numerical procedure to compute transmission through carbon nanotubes and related structures. Two models of disorder are considered, weak uniform disorder and isolated strong scatterers. In the case of weak uniform disorder, our simulations show that the conductance is not significantly affected by disorder when the Fermi energy is close to the band center. Further, the transmission around the band center depends on the diameter of these zero bandgap wires. We also find that the calculated small bias conductance as a function of the Fermi energy exhibits a dip when the Fermi energy is close to the second subband minima. In the presence of strong isolated disorder, our calculations show a transmission gap at the band center, and the corresponding conductance is very small

    Minkowski Tensors of Anisotropic Spatial Structure

    Get PDF
    This article describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalisations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations, and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The article further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic method more readily accessible for future application in the physical sciences
    • …
    corecore