37 research outputs found

    Resting-State Brain Organization Revealed by Functional Covariance Networks

    Get PDF
    BACKGROUND: Brain network studies using techniques of intrinsic connectivity network based on fMRI time series (TS-ICN) and structural covariance network (SCN) have mapped out functional and structural organization of human brain at respective time scales. However, there lacks a meso-time-scale network to bridge the ICN and SCN and get insights of brain functional organization. METHODOLOGY AND PRINCIPAL FINDINGS: We proposed a functional covariance network (FCN) method by measuring the covariance of amplitude of low-frequency fluctuations (ALFF) in BOLD signals across subjects, and compared the patterns of ALFF-FCNs with the TS-ICNs and SCNs by mapping the brain networks of default network, task-positive network and sensory networks. We demonstrated large overlap among FCNs, ICNs and SCNs and modular nature in FCNs and ICNs by using conjunctional analysis. Most interestingly, FCN analysis showed a network dichotomy consisting of anti-correlated high-level cognitive system and low-level perceptive system, which is a novel finding different from the ICN dichotomy consisting of the default-mode network and the task-positive network. CONCLUSION: The current study proposed an ALFF-FCN approach to measure the interregional correlation of brain activity responding to short periods of state, and revealed novel organization patterns of resting-state brain activity from an intermediate time scale

    Altered Effective Connectivity Network of the Amygdala in Social Anxiety Disorder: A Resting-State fMRI Study

    Get PDF
    The amygdala is often found to be abnormally recruited in social anxiety disorder (SAD) patients. The question whether amygdala activation is primarily abnormal and affects other brain systems or whether it responds “normally” to an abnormal pattern of information conveyed by other brain structures remained unanswered. To address this question, we investigated a network of effective connectivity associated with the amygdala using Granger causality analysis on resting-state functional MRI data of 22 SAD patients and 21 healthy controls (HC). Implications of abnormal effective connectivity and clinical severity were investigated using the Liebowitz Social Anxiety Scale (LSAS). Decreased influence from inferior temporal gyrus (ITG) to amygdala was found in SAD, while bidirectional influences between amygdala and visual cortices were increased compared to HCs. Clinical relevance of decreased effective connectivity from ITG to amygdala was suggested by a negative correlation of LSAS avoidance scores and the value of Granger causality. Our study is the first to reveal a network of abnormal effective connectivity of core structures in SAD. This is in support of a disregulation in predescribed modules involved in affect control. The amygdala is placed in a central position of dysfunction characterized both by decreased regulatory influence of orbitofrontal cortex and increased crosstalk with visual cortex. The model which is proposed based on our results lends neurobiological support towards cognitive models considering disinhibition and an attentional bias towards negative stimuli as a core feature of the disorder

    Mind wandering and task-focused attention: ERP correlates

    Get PDF
    Previous studies looking at how Mind Wandering (MW) impacts performance in distinct Focused Attention (FA) systems, using the Attention Network Task (ANT), showed that the presence of pure MW thoughts did not impact the overall performance of ANT (alert, orienting and conflict) performance. However, it still remains unclear if the lack of interference of MW in the ANT, reported at the behavioral level, has a neurophysiological correspondence. We hypothesize that a distinct cortical processing may be required to meet attentional demands during MW. The objective of the present study was to test if, given similar levels of ANT performance, individuals predominantly focusing on MW or FA show distinct cortical processing. Thirty-three healthy participants underwent an EEG high-density acquisition while they were performing the ANT. MW was assessed following the ANT using an adapted version of the Resting State Questionnaire (ReSQ). The following ERP's were analyzed: pN1, pP1, P1, N1, pN, and P3. At the behavioral level, participants were slower and less accurate when responding to incongruent than to congruent targets (conflict effect), benefiting from the presentation of the double (alerting effect) and spatial (orienting effect) cues. Consistent with the behavioral data, ERP's waves were discriminative of distinct attentional effects. However, these results remained true irrespective of the MW condition, suggesting that MW imposed no additional cortical demand in alert, orienting, and conflict attention tasks.Acknowledgements Óscar F. Gonçalves was funded by the Brazilian National Counsel for Scientific and Technological Development (CNPq) as a Special Visiting Researcher of the Science Without Borders program (401143/2014-7). Paulo S Boggio was funded by a CNPq researcher fellowship (311641/2015-6). Olivia Morgan Lapenta and Tatiana Conde were supported by two postdoctoral grants from CNPq (150249/2017-9 and 152358/2016-1). Sandra Carvalho was funded by the Portuguese Foundation for Science and Technology (FCT) with the grant IF/00091/2015. Gabriel Rêgo was supported by a PhD grant from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-2015/18713-9). This work was partially supported by FEDER funds through the Programa Operacional Factores de Competitividade – COMPETE and by national funds through FCT – Fundação para a Ciência e a Tecnologia (P2020-PTDC/MHC-PCN/3950/2014).info:eu-repo/semantics/publishedVersio

    Ten years of Nature Reviews Neuroscience: insights from the highly cited

    Full text link

    A critical review of the contribution of eye movement recordings to the neuropsychology of obsessive compulsive disorder.

    No full text
    International audienceDysfunctions of saccadic and/or smooth pursuit eye movements have been proposed as markers of obsessive compulsive disorder (OCD), but experimental results are inconsistent. The aim of this paper was to review the literature on eye movement dysfunctions in OCD to assess whether or not saccades or smooth pursuit may be used to diagnose and characterize OCD. Literature was searched using PubMed, ISI Web of Knowledge, and PsycINFO databases for all studies reporting eye movements in adult patients suffering from OCD. Thirty-three articles were found. As expected, eye movements of the patients with OCD were mostly assessed with simple oculomotor paradigms involving saccadic and/or smooth pursuit control. In contrast to patients with schizophrenia, however, patients with OCD only displayed rather unspecific deficits, namely slight smooth pursuit impairments and longer response latencies on antisaccade tasks. There was no relationship between these deficits and the severity of patients' symptoms. Interestingly, eye movements of the patients with OCD were almost never recorded during more complex cognitive tasks. As in schizophrenia and autism, eye movement recordings during more complex tasks might help to better characterize the cognitive deficits associated with OCD. Such recordings may reveal specific OCD-related deficits that could be used as reliable diagnostic and/or classification tools
    corecore