8,741 research outputs found

    Computation of the equilibrium composition of reacting gas-solid mixtures with material and energy balance constraints Status report

    Get PDF
    Equilibrium composition computed for reacting- gas-solid composite materials using material and energy constraint

    Experimental verification of the non-equilibrium model for predicting behavior in the char zone of a charring ablator Status report

    Get PDF
    Experimental simulation to establish accuracy of nonequilibrium flow model with system simulating charring during ablatio

    Solution of the Frozen Flow Momentum Equation Status Report

    Get PDF
    Momentum equation solved for frozen flow in char zone of charring ablato

    Open-beauty production in ppPb collisions at sNN\sqrt{s_{NN}}=5 TeV: effect of the gluon nuclear densities

    Full text link
    We present our results on open beauty production in proton-nucleus collisions for the recent LHC ppPb run at sNN\sqrt{s_{NN}}=5 TeV. We have analysed the effect of the modification of the gluon PDFs in nucleus at the level of the nuclear modification factor. Because of the absence of measurement in pppp collisions at the same energy, we also propose the study of the forward-to-backward yield ratio in which the unknown proton-proton yield cancel. Our results are compared with the data obtained by LHCb collaboration and show a good agreement.Comment: 6 pages, 3 figures, Proceedings IS2013 submitted to Nuclear Physics

    Effective penetration length and interstitial vortex pinning in superconducting films with regular arrays of defects

    Get PDF
    In order to compare magnetic and non-magnetic pinning we have nanostructured two superconducting films with regular arrays of pinning centers: Cu (non-magnetic) dots in one case, and Py (magnetic) dots in the other. For low applied magnetic fields, when all the vortices are pinned in the artificial inclusions, magnetic dots prove to be better pinning centers, as has been generally accepted. Unexpectedly, when the magnetic field is increased and interstitial vortices appear, the results are very different: we show how the stray field generated by the magnetic dots can produce an effective reduction of the penetration length. This results in strong consequences in the transport properties, which, depending on the dot separation, can lead to an enhancement or worsening of the transport characteristics. Therefore, the election of the magnetic or non-magnetic character of the pinning sites for an effective reduction of dissipation will depend on the range of the applied magnetic field.Comment: 10 pages, 3 figure

    Evaluation of the energy transfer in the char zone during ablation. Part 1 - Theoretical and experimental results for heat shield surface temperatures up to 3000 deg F

    Get PDF
    Energy transfer in reacting flow of pyrolysis products through char layer of nylon-phenolic resin charring ablato

    AE Aurigae: first detection of non-thermal X-ray emission from a bow shock produced by a runaway star

    Get PDF
    Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace by the encounter of two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30" to the northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscattering of infrared photons from dust in the shock front.Comment: Accepted for publication in the Astrophysical Journal with number ApJ, 757, L6. Four figure

    Relationship between photo-physical and electrochemical properties of D-Ï€-A compounds regarding solar cell applications. 1. Substituent type effect in photovoltaic performance

    Get PDF
    Studying the electrochemical characteristics is an important step for determining interactions between molecules and the chemical environment. Moreover, the electrochemical evaluation of dyes is highly needed to establish the behavior of electro-active chemical species inside dye-sensitized solar cells (DSSCs). Four compounds, M8-1, M8-2, M8-O1, and M8-O2 (with a common organic structure (E)-2-cyano-3-(5-((E)-2-(9,9-diethyl-7-(phenylamino)-9H-fluoren-2-yl)vinyl)thiophen-2-yl)acrylic acid), are studied in two solvents, tetrahydrofuran (THF) and dimethylsulfoxide (DMSO). Among the studied compounds, M8-1 has highlighted characteristics compared with the others: its ground and excited states oxidation potential are the highest (1.14 and −1.22 V, respectively). Also, it shows the lowest energy gap between the excited state oxidation potential and the TiO2 conduction band. Relating to the substituent effect, the shorter the length, the higher the energetic difference in the electronic transition (M8-1 and 2). Comparing characteristics through quantum chemistry, the values obtained in DMSO are the most predictable. The injection energies signal that M8-1 is the best injector. The performances in solar cells are measured in three TiO2 materials: Degussa (D-TiO2), active opaque (A-TiO2), and transparent (T-TiO2). The IPCE results show the A > T > D average tendency, and the family of substituted alkyl has higher values than the alcoxyl one. Furthermore, in the first family the methyl substituent has a higher value than the ethyl one. M8-1 has the highest IPCE value, on average. In terms of efficiency, the alkyl substituted family again has higher values than the alcoxyl family. On average, the methyl substituent has a higher value than the ethyl one in both families. M8-1 has the highest efficiency value

    The colored Hanbury Brown--Twiss effect

    Full text link
    The Hanbury Brown--Twiss effect is one of the celebrated phenomenologies of modern physics that accommodates equally well classical (interferences of waves) and quantum (correlations between indistinguishable particles) interpretations. The effect was discovered in the late thirties with a basic observation of Hanbury Brown that radio-pulses from two distinct antennas generate signals on the oscilloscope that wiggle similarly to the naked eye. When Hanbury Brown and his mathematician colleague Twiss took the obvious step to propose bringing the effect in the optical range, they met with considerable opposition as single-photon interferences were deemed impossible. The Hanbury Brown--Twiss effect is nowadays universally accepted and, being so fundamental, embodies many subtleties of our understanding of the wave/particle dual nature of light. Thanks to a novel experimental technique, we report here a generalized version of the Hanbury Brown--Twiss effect to include the frequency of the detected light, or, from the particle point of view, the energy of the detected photons. In addition to the known tendencies of indistinguishable photons to arrive together on the detector, we find that photons of different colors present the opposite characteristic of avoiding each others. We postulate that fermions can be similarly brought to exhibit positive (boson-like) correlations by frequency filtering.Comment: 18 pages, includes supplementary material of the derivation
    • …
    corecore