771 research outputs found

    Flavor constraints on electroweak ALP couplings

    Full text link
    We explore the signals of axion-like particles (ALPs) in flavor-changing neutral current (FCNC) processes. The most general effective linear Lagrangian for ALP couplings to the electroweak bosonic sector is considered, and its contribution to FCNC decays is computed up to one-loop order. The interplay between the different couplings opens new territory for experimental exploration, as analyzed here in the ALP mass range 0<ma≲50<m_a \lesssim 5 GeV. When kinematically allowed, K→πννˉK\to \pi \nu \bar{\nu} decays provide the most stringent constraints for channels with invisible final states, while BB-meson decays are more constraining for visible decay channels, such as displaced vertices in B→K(∗)μ+μ−B\to K^{(\ast)} \mu^+ \mu^- data. The complementarity with collider constraints is discussed as well.Comment: 12 pages, 6 figure

    The Axion and the Goldstone Higgs

    Full text link
    We consider the renormalizable SO(5)/SO(4)SO(5)/SO(4) σ\sigma-model, in which the Higgs particle has a pseudo-Nambu-Goldstone boson character, and explore what the minimal field extension required to implement the Peccei-Quinn symmetry (PQ) is, within the partial compositeness scenario. It turns out that the minimal model does not require the enlargement of the exotic fermionic sector, but only the addition of a singlet scalar: it is sufficient that the exotic fermions involved in partial compositeness and the singlet scalar become charged under Peccei-Quinn transformations. We explore the phenomenological predictions for photonic signals in axion searches for all models discussed. Because of the constraints imposed on the exotic fermion sector by the Standard Model fermion masses, the expected range of allowed axion-photon couplings turns out to be generically narrowed with respect to that of standard invisible axion models, impacting the experimental quest.Comment: 31 pages, 2 Figures. Description improved, results unchange

    Non-linear Higgs portal to Dark Matter

    Get PDF
    The Higgs portal to scalar Dark Matter is considered in the context of non-linearly realised electroweak symmetry breaking. We determine the dominant interactions of gauge bosons and the physical Higgs particle h to a scalar singlet Dark Matter candidate. Phenomenological consequences are also studied in detail, including the possibility of distinguishing this scenario from the standard Higgs portal in which the electroweak symmetry breaking is linearly realised. Two features of significant impact are: i) the connection between the electroweak scale v and the Higgs particle departs from the (v + h) functional dependence, as the Higgs field is not necessarily an exact electroweak doublet; ii) the presence of specific couplings that arise at different order in the non-linear and in the linear expansions. These facts deeply affect the Dark Matter relic abundance, as well as the expected signals in direct and indirect searches and collider phenomenology, where Dark Matter production rates are enhanced with respect to the standard portal

    Bubble concentration on spheres for supercritical elliptic problems

    Full text link
    We consider the supercritical Lane-Emden problem (P_\eps)\qquad -\Delta v= |v|^{p_\eps-1} v \ \hbox{in}\ \mathcal{A} ,\quad u=0\ \hbox{on}\ \partial\mathcal{A} where A\mathcal A is an annulus in \rr^{2m}, m≥2m\ge2 and p_\eps={(m+1)+2\over(m+1)-2}-\eps, \eps>0. We prove the existence of positive and sign changing solutions of (P_\eps) concentrating and blowing-up, as \eps\to0, on (m−1)−(m-1)-dimensional spheres. Using a reduction method (see Ruf-Srikanth (2010) J. Eur. Math. Soc. and Pacella-Srikanth (2012) arXiv:1210.0782)we transform problem (P_\eps) into a nonhomogeneous problem in an annulus \mathcal D\subset \rr^{m+1} which can be solved by a Ljapunov-Schmidt finite dimensional reduction

    Goitre and Iodine Deficiency in Europe

    Get PDF
    The prevalence of endemic iodine-deficiency goitre in Europe has been reduced in many areas by the introduction of iodination programmes. Recent reports, however, show that goitre remains a significant problem and that its prevalence has not decreased in a number of European countries. Hetzel1 has pointed out that the high global prevalence of iodine-deficiency disorders could be eradicated within 5-10 years by introduction of an iodised salt programme. The current World Health Organisation recommendations for iodine intake are between 150 and 300 μg/da

    Wavepacket detection with the Unruh-DeWitt model

    Get PDF
    In this paper we deal with several issues regarding the localization properties of the Unruh-DeWitt (UdW) detector model. Since its original formulation as a pointlike detector, the UdW model has been used to study extensively the physics of quantum fields in presence of accelerations or curved backgrounds. Natural extensions of it have tried to take into account the spatial profile of such detectors, but all of them have met a series of problems in their spectral response which render them useless to study some of the most interesting physical scenarios. In this paper we provide a derivation of the smeared UdW interaction from QED first principles, then we analyze the spectral response of spatially smeared UdW detectors, and discuss the kind of spatial profiles which are useful for the study of relevant cases.Comment: 7 pages, 3 figure

    Relative distances of Omega Centauri and 47 Tucanae

    Full text link
    We present precise optical and near-infrared ground-based photometry of two Globular Clusters (GCs): Omega Cen and 47 Tuc. These photometric catalogs are unbiased in the Red Giant Branch (RGB) region close to the tip. We provide new estimates of the RGB tip (TRGB) magnitudes--m_I(TRGB)=9.84+/-0.05, Omega Cen; m_I(TRGB)=9.46+/-0.06, 47 Tuc--and use these to determine the relative distances of the two GCs. We find that distance ratios based on different calibrations of the TRGB, the RR Lyrae stars and kinematic distances agree with each other within one sigma. Absolute TRGB and RR Lyrae distance moduli agree within 0.10--0.15 mag, while absolute kinematic distance moduli are 0.2--0.3 mag smaller. Absolute distances to 47 Tuc based on the Zero-Age-Horizontal-Branch and on the white dwarf fitting agree within 0.1 mag, but they are 0.1--0.3 mag smaller than TRGB and RR Lyrae distances.Comment: 5 pages, 4 figures, accepted for publication by ApJ

    An Improved High Order Finite Difference Method for Non-conforming Grid Interfaces for the Wave Equation

    Get PDF
    This paper presents an extension of a recently developed high order finite difference method for the wave equation on a grid with non-conforming interfaces. The stability proof of the existing methods relies on the interpolation operators being norm-contracting, which is satisfied by the second and fourth order operators, but not by the sixth order operator. We construct new penalty terms to impose interface conditions such that the stability proof does not require the norm-contracting condition. As a consequence, the sixth order accurate scheme is also provably stable. Numerical experiments demonstrate the improved stability and accuracy property
    • …
    corecore