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In this paper we deal with several issues regarding the localization properties of the Unruh-DeWitt

(UdW) detector model. Since its original formulation as a pointlike detector, the UdW model has been

used to study extensively the physics of quantum fields in presence of accelerations or curved back-

grounds. Natural extensions of it have tried to take into account the spatial profile of such detectors, but all

of them have met a series of problems in their spectral response which render them useless to study some

of the most interesting physical scenarios. In this paper we provide a derivation of the smeared UdW

interaction from QED first principles, then we analyze the spectral response of spatially smeared UdW

detectors, and discuss the kind of spatial profiles which are useful for the study of relevant cases.
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I. INTRODUCTION

The Unruh-DeWitt (UdW)model describes phenomeno-
logically a monopole detector coupled to a massless scalar
field, moving in the four-dimensional Minkowski space.
Since its inception, it has been used to study the response of
detectors experiencing acceleration, to provide a proof for
the Unruh effect, and particularly as one of the main tools
to probe dynamics of entanglement in the context of the
recent field of relativistic quantum information.

Usually, the detector considered is a quantum system
with two internal states, ground state jgi and excited state
jei, with � (taking ℏ ¼ 1) being the energy difference
between the two levels. The detector is then coupled to
the real massless scalar field � according to the following
interaction Hamiltonian:

Hint ¼ ��ð�Þ�ð�Þ�ðxð�ÞÞ; (1)

where � is the coupling strength, � is a switching function
which activates during the interaction time, �ð�Þ the
monopole momentum operator and xð�Þ the worldline of
the atom.

In spite of the differences between this monopole-scalar
field interaction and QED (for instance in the behavior at
very extreme frequencies which may quantitatively vary),
it characterizes adequately the matter-radiation interaction
in some specific settings [1] (see Sec. II for further details),
while it very accurately models the interaction of internal
degrees of freedom of atoms with phonon fields (for ex-
ample the spin-phonon interaction of ions in a Coulomb
crystal, collective excitations of Bose-Einstein condensates
[2] and other solid state and analog systems). This model
and certain variations of it have been extensively used in
the literature for many purposes [3], including thermaliza-
tion dynamics and decoherence (Refs. [4,5] and references
therein), although it is more known for what regards the
studies of the Unruh effect and Hawking radiation [6–8].

As a detector model, it performs commonly under the
pointlike approximation, i.e., it has no extension and inter-
acts with the field only in the exact geometric point of the
space-time where it is placed. While this assumption—
which will always be an approximation since any physical
detector has a finite size—seems to be valid in many
scenarios, it is not valid in general even for physically
interesting scenarios, and is particularly problematic in
some specific settings that we will discuss below. Also, it
presents UV divergences as any pointlike interaction and
cannot be guaranteed to hold for any context where we
consider several detectors undergoing relativistic motion
where the pointlike approximation may be violated from
some reference frames. Moreover, additional problems
with the pointlike nature of the detector arise. For instance,
there are various regularization schemes which yield dif-
ferent transition probabilities [9].
For all these reasons, and keeping in mind that any

realistic particle detector has a finite size, it is important
to model and understand particle detectors that present a
spatial smearing. However, previous localization models
present a series of issues when it comes to analyzing non-
vacuum field states. In this paper we will show to what
extent an Unruh-DeWitt detector is a reliable model of
electromagnetic atomic transitions, by explicitly analyzing
the relationship between the atomic wave functions and the
spatial smearing. We also intend to provide a pedagogical
description of the use of a spatially smeared UdW model
and we will discuss how to overcome the problems when
analyzing signals by means of a small but essential modi-
fication of the spatial profiles employed in the past.
Besides, we will focus on the particular case of spatially
smeared uniformly accelerated detectors.
The paper is organized as follows: In Sec. II we show

from first principles how to relate the spatial profile of the
UdW model to the wave functions of physical systems
under standard QED interactions. In Sec. III we present

PHYSICAL REVIEW D 87, 064038 (2013)

1550-7998=2013=87(6)=064038(8) 064038-1 � 2013 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36138272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevD.87.064038


the localization issues of the canonical UdW detector
employed in the literature when the size of the detector is
comparable to the wavelength they are tuned to. In Sec. IV
we propose a way around these difficulties by modifying
the spatial profile of the smeared UdW detector. In Sec. V
we discuss how to use these detectors to analyze arbitrary
signals in accelerated settings. Finally, Sec. VI contains
our conclusions.

II. MODELING ATOMIC PHYSICS WITH THE
UNRUH-DEWITT DETECTOR

An UdW detector is an ad hoc phenomenological model
commonly used to study idealized situations in field theory
and noninertial settings. The model is built specifically for
its useful properties and simplicity. While desirable traits
are good guidelines for model building, one should always
keep the physics in mind. This section is concerned with
the build up of a smeared UdW detector out from first
principles and standard QED interactions.

First, note that the simple scalar field model (1) cannot
be directly used to relate the UdW model to electromag-
netic phenomena due to the vector character of the photon
field. The vector version of an UdW interaction with a
smeared field operator would be

HI ¼
X

�¼þ;�

Z
dx�½FðxÞ�þ þ F�ðxÞ��� �AðxÞ; (2)

where we have omitted any switching function, as the
electromagnetic interaction cannot be switched, and where
�� is the two-level system lowering operator, as is com-
mon in the literature. We have also allowed for a complex
profile function. The detector is assumed to be inertial; we
discuss the treatment of an accelerated UdW detector in
Sec. V.

The physical system the UdW detector tries to emulate is
that of a two-level atom coupled to a quantum electromag-
netic field. The Hamiltonian for such a system is well
known and it is simply

HQED
I ¼ epD �Aðx; 0Þ

¼ pD � X
�¼þ;�

Z dpffiffiffiffiffiffi
2p

p ½�p;�ayp;�e�ipx

þ ��p;�ap;�eipx�; (3)

where pD is the detector momentum and in the last two
equalities we assume a (1þ 1)-dimensional setting. In this
setting, pD is itself an operator, the momentum operator of
the valence electron of the two-level system. There is a
simple way to relate (3) to (2); we simply write down the
operator in (3) in terms of field operators and atomic Pauli
matrices. There are four possible matrix elements for the
pDAðx; 0Þ operator in terms of the relevant wave functions,
�gðxÞ for the ground state and �eðxÞ for the excited state

of the detector, which can be neatly written into matrix
form as

HQED
I ¼�Iþ	�zþ
�xþ��y;

�¼e
X

�¼þ;�

Z dpffiffiffiffiffiffi
2p

p
�
ayp

G�
ggðpÞþG�

eeðpÞ
2

þH:c:

�
;

	¼e
X

�¼þ;�

Z dpffiffiffiffiffiffi
2p

p
�
ayp

G�
ggðpÞ�G�

eeðpÞ
2

þH:c:

�
;


¼e
X

�¼þ;�

Z dpffiffiffiffiffiffi
2p

p
�
ayp

G�
geðpÞþG�

egðpÞ
2

þH:c:

�
;

�¼e
X

�¼þ;�

Z dpffiffiffiffiffiffi
2p

p
�
ayp

G�
geðpÞ�G�

egðpÞ
2i

þH:c:

�
;

(4)

with

G�
ijðpÞ ¼

Z
dxe�ipx�p;� � ð��

i ðxÞ½�ir�jðxÞ�Þ: (5)

If we performed the same calculation with the interac-
tion (2), we would obtain

G�
ijðpÞ ¼ ½�ig�je þ �ie�jg�

Z
dxe�ipx�p;� � FðxÞ: (6)

We have thus expressed the physical interaction

Hamiltonian HQED
I in the language of (2). If we only

consider the �x and �y terms, we may compare directly

to (2). From (5) and (6) we find that the two Hamiltonians
are equivalent with a smearing function

F ðxÞ ¼ �i��
eðxÞr�gðxÞ: (7)

We have thus made a first connection between (2) and
the physics—the smearing function can be obtained in
terms of the atomic wave functions of the two-level system.
This means that the smeared UdWHamiltonian commonly
used in the literature can be related in a direct manner to the
physical properties of the underlying system, directly relat-
ing the smearing function to the wave functions of the
excited and ground states of the two-level atom. Note
that the terms with I and �z do not vanish and can never
do so unless �e ¼ �g ¼ 0, or in the dipolar approxima-

tion, where e�ipx ’ 1.
The � term can be dealt with full generality, as it can be

reabsorbed into the free field Hamiltonian HF,

HF þ � ¼
Z

dp

�
jpjaypap þ 1ffiffiffiffiffiffi

2p
p

�
ayp

G�
ggðpÞ þG�

eeðpÞ
2

þ ap
G�

ggðpÞ� þG�
eeðpÞ�

2

��
; (8)

and so defining new modes,

bp ¼ ap þ e

ð2pÞ3=2 ½G
�
ggðpÞ þG�

eeðpÞ�; (9)

and neglecting the usual infinite zero-point contribution,
we deal with the � term. We only have to substitute the ap
in terms of the bp in 
, which amounts to the addition of a

constant term to 
,
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�
¼e2

4
R

�Z dp

p
½G�

ggðpÞ�þG�
eeðpÞ�ÞðG�

geðpÞþG�
egðpÞ�

�
:

(10)

This will induce an extra �
�x term in the Hamiltonian,

which will be relevant or not depending on how �
 com-

pares with�, the detector system gap. As�
=e is typically

of order 1 or less, this term will not be important if we are
in a perturbation theory regime where the coupling e is
assumed to be small. The same considerations apply to ��.
The analogous correction to 	,

�	¼e2

4
R

�Z dp

p
½G�

ggðpÞ�þG�
eeðpÞ��½G�

ggðpÞ�G�
eeðpÞ�

�
;

(11)

can be reabsorbed into �.
Dealing with 	 is a more challenging matter. We cannot

do the same as before because, even though we could make
the Hamiltonian look like that of a free field plus an UdW
interaction, the detector and field operators would not
commute and hence, even without the interaction, the
theory would not be a free theory.

There is one special circumstance in which 	 vanishes:
in systems with a strong spin interaction, so that the gap
comes from the spin dependence of the energy levels. This
could happen, for instance, in states of an atom within a
strong magnetic field. In this case the atomic wave func-
tions of the ground and excited states are the same and
therefore 	 ¼ 0 exactly. The energy gap is ℏ� ¼ �BB.
The coupling constant to the electric field is� ed where d
is a typical dimension of the atom, so in order to be in
perturbation theory regime we would require electric fields
of order E<�BB=ed.

As a particular example, consider the smearing function
for a hydrogen atom in its 1s state subjected to a magnetic
field. According to (7), we would have

F ðxÞ ¼ �i
e�r=a0

�a40
ur: (12)

III. LOCALIZATION ISSUES OF THE UDW
DETECTOR

The first UdW localization model was introduced by
Schlicht [9] to solve the problems with the nonequivalence
of regulators derived from the pointlike nature of the
detector. In particular, he proposed a localized spatial
profile for the detector (which for computational conve-
nience was chosen to be Lorentzian). This localization
model was further studied by Langlois [10] first, and
then by Louko and Satz [11,12], who envisioned a more
general schemewhich allowed general spatial profiles to be
considered undergoing arbitrary movement throughout
space-time. In these works the interaction Hamiltonian is
defined as follows:

HI ¼ g
Z 1

0

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ð2�Þ3p Z

dxFðxÞð�þei�t þ ��e�i�tÞ

� ðayke�iðk�x�!tÞ þ ake
iðk�x�!tÞÞ; (13)

where FðxÞ is the spatial smearing of the detector that is
supposed, for simplicity and without loss of generality, at
rest and centered in x ¼ 0, and� represents the frequency
gap of the two-level system, in other words, the transition
energy between the ground and excited state of the detec-
tor. The detector is supposed to be tuned to this frequency,
i.e., it is more likely that the detector absorbs field quanta
of this frequency than anything else, as we will discuss
below. In the case that the detector is pointlike FðxÞ ¼
�ðxÞ, this model becomes the standard UdW detector in-
troduced in Ref. [13].
The form of the function FðxÞ must be related to the

characteristics of the physical system modeled by the
Hamiltonian (13). In the particular case of a two-level
atom, FðxÞ should be obtainable from the wave functions
of the ground and excited states of the atom and the matter-
radiation interaction Hamiltonian. For the case of atomic
spin transitions, the form of the Hamiltonian was derived
from first principles in Sec. II.
However, it is interesting to be able to consider detectors

whose size becomes comparable with the wavelength to
which they are tuned. These regimes cover a great range of
extremely interesting physical scenarios, e.g., quantum
microwave antennae (for example flux or charge qubits
in cQED), Rydberg atoms and cavity based detectors
[14,15], where one can no longer use an atomic wave
function to obtain the form of the Hamiltonian. Yet, it is
well known that the pointlike model is a good effective
description of the physics [14,15]. As we will discuss
below, a question arises when studying the compatibility
of the standard spatially smeared UdW model with detec-
tors whose characteristic length is comparable to the wave-
length detected beyond the atomic scale.
In the following paragraphs we will point out a funda-

mental issue with the use of the traditional smeared UdW
model when considering spatially extended detectors. For
these cases, we propose a way to modify the detector
model in order to formulate an effective theory reproduc-
ing the correct phenomenology.
Previous works dealing with the localized UdW model

just considered the behavior of the detector interacting
with the Minkowski vacuum, which is known to have
equivalent behavior for all frequencies [11,12]. In that
respect, the problems of the model dealt with in this
manuscript have not been studied yet. We will discuss
below how they can build up when one tries to process
physical signals and photon wavepackets with such
a detector.
For most recent analyses [9–12] a real symmetric profile

function was chosen. In particular, the spatial profile used
for most calculations was a Lorentzian. To illustrate here
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the problem in the most simple way we will consider a
Gaussian profile, but all results apply equivalently to the
Lorentzian case or to any other spatial profile.

From the Hamiltonian (13), the integral over x takes the
form of a trivial Fourier transform

HI ¼ g
Z 1

0

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!kð2�Þ3

p ð�þei�t þ ��e�i�tÞðF̂ðkÞaykei!kt

þ F̂ð�kÞake�i!ktÞ; (14)

where we have made the dispersion relation explicit
!k ¼ cjkj and

F̂ðkÞ ¼
Z

dxFðxÞe�ik�x (15)

is the Fourier transform of the spatial profile.
We can rewrite the Hamiltonian in a way in which the

resonant and antiresonant terms are made explicit:

HI ¼ g
Z dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!kð2�Þ3
p ½F̂ðkÞðayk��eið!k��Þt þ H:c:Þ

þ F̂ð�kÞðayk�þeið!kþ�Þt þ H:c:Þ�: (16)

The time evolution operator is computed as the time
ordered exponential of the Hamiltonian. When integrating
over times, the exponential factors in the Hamiltonian
above are highly oscillating except when !k ¼ cjkj �
�� (stationary phase). This is the mathematical reason
why a detector is tuned to the frequency of the energy gap
between the ground and the excited state, as it is very well
known from the study of the matter-radiation interactions
[1,16]. In plain words, if we want to stimulate the transition
between ground and excited state we have to ‘‘beam’’ the
detector with radiation tuned to the natural frequency of the
transition (on resonance). Otherwise, the probability of
transition quickly decreases with the detuning between
this natural frequency and the frequency of the radiation
stimulating the transition.

Here is the issue. If we choose FðxÞ to be a localized
smooth function such as a Gaussian or a Lorentzian, which
is the case for most realistic atoms, the frequency profile
FðkÞ will be a localized function centered in k ¼ 0. Being
this so, its evaluation at �=c will give a negligible value,
for � sufficiently large.

The reason why this issue does not arise in electronic
transitions for atoms at rest is because, for most cases, �
is small enough. For instance, electronic transitions in the
hydrogen atom have an � in the visible range of the
spectrum, whereas the Fourier transform of the spatial
profile has a width of �a�1

0 , which extends up to the

x-ray spectrum.
However, when we consider accelerated detectors, the

Minkowski frequency for a packet centered in � as seen
from the detector, varies effectively as a function of time as

!R ¼ �ea�=c (see derivation on Sec. V and Ref. [17]) and
even for very small times it goes out of resonance. Even if

we compensate the Doppler shift of the wavepacket tuning
the detector in real time for the period while packet and
detector overlap, we would easily get the problem of the
frequency getting too far from our detector support func-
tion. If the spatial profile function does not have informa-
tion about the energy gap between the ground and excited
state of the detector, the response of the detector to the
resonance frequency (the frequency which, by far, mostly
contributes to the estimated transition from the ground and
excited state) will be exponentially dampened by the
Gaussian or Lorentzian tails. That implies that an accel-
erated detector would be, in practical terms, incapable of
detecting a wavepacket centered on its natural frequency. If
we are to analyze signals with UdW detectors, the model
should be accordingly modified to avoid this issue.
To illustrate the problem let us consider the most simple

1D case, and a detector with a Gaussian spatial profile. We
can take FðxÞ to be a normalized Gaussian profile with
characteristic length L:

FðxÞ ¼ 1

L
ffiffiffiffiffiffiffi
2�

p exp

��x2

2L2

�
: (17)

And so its Fourier transform F̂ðkÞ will be a Gaussian
localized around k ¼ 0,

F̂ðkÞ ¼ exp

��k2L2

2

�
: (18)

Any frequencies such that !k 	 0 would be exponen-

tially dampened in the integral over k by the weight F̂ðkÞ.
In particular, if � 	 0, the stationary phase contribution
!k ¼ �� will be zero due to Fð��=cÞ � 0, effectively
cancelling any nontrivial time evolution.
So, as it is illustrated in Fig. 1, if� 	 cL�1 the detector

will not ever detect any signal even if it is a powerful pulse
tuned to the transition frequency. Therefore, in order to be
able to study relativistic settings, some modifications must
be made to the model.
One could argue that if the detector is very small with

respect of the wavelength to which it is tuned (as it is the

0

0.2

0.4

0.6

0.8

1

FIG. 1 (color online). A highly localized F̂ðkÞ centered in 0
would practically suppress the possibility of detection for the
resonance frequencies to which the detector is most responsive,
k ¼ ��=c. This results in a vanishing transition probability no
matter what frequency we use to illuminate the detector.
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case of atoms), the Gaussian profile F̂ðkÞ may cover the
resonance regions. However, as seen in Fig. 2, if we
analyze the probability of transition as a function of the
frequency of the radiation with which the detector inter-
acts, its spectral response will be asymmetric in the
detuning between the detector natural frequency and
the frequency of the radiation stimulating the transition
� ¼ !k ��.

In other words, if the transition frequency is � and the
radiation stimulating the transition is detuned from the
energy gap of the detector by a small factor �, the proba-

bility of transition will be positively weighted by F̂ðkÞ if
!k ¼ �� �, and dampened if !k ¼ �þ �.

Although a similar asymmetry occurs in realistic atomic
transitions (as detailed in Sec. V), the effect is so small that
it can be neglected in most circumstances. In practice, no
such effects are observed neither in atomic detectors nor in
any other settings where quantum systems (like harmonic
oscillators) are coupled to quantum fields.

When the size of the detectors increases as to become
comparable with the wavelength to which they are tuned,
e.g., quantum microwave antennae (for example flux or
charge qubits in cQED), Rydberg atoms and cavity based
detectors [14,15], the detector response is also symmetric
in frequencies. Therefore the use of the Unruh-DeWitt
detector presented above to model those scenarios (where
the spatial profile is related to the natural dimension of the
detector), can be problematic.

IV. MODULATED OSCILLATIONS IN THE
SPATIAL PROFILE

In most realistic settings, the spectral response function
of two-level emitters is symmetric with respect to the
resonance frequency, thus a small detuning should produce
similar effects no matter if it is positive or negative. Also,
as we discussed above, if the two-level system size is
comparable with the wavelength it is tuned to, the localized
UdW model employed in the literature will dramatically
fail to detect anything, even if it is the case of an intense
pulse of radiation centered in the natural frequency of the
detector’s transition.

Taking these issues into account, we propose a modifi-
cation of the way in which the UdW detector is spatially
smeared. We will do so by feeding the spatial profile with
information about the resonance frequency. For that matter,
we will introduce a spatial profile which is strongly
localized by a function SðxÞ, modulated by internal oscil-
lations associated with the frequency the two-level system
is tuned to.
If the spatial profile is

FðxÞ ¼ SðxÞ cos
�
�x

c

�
(19)

then the spectral profile would be

F̂ðkÞ ¼ 1

2
½Ŝðk��=cÞ þ Ŝðk��=cÞ�; (20)

which is a localized profile in frequencies around the two
resonance regions. If we take SðxÞ to be the Gaussian
profile (17) then

F̂ðkÞ ¼ 1

2
ðe1

2ðk��=cÞ2L2 þ e�1
2ðkþ�=cÞ2L2Þ; (21)

which, as seen in Fig. 3, covers symmetrically the reso-
nance regions.
By doing this we have the desired spectral response no

matter the value of �, and the detector is spatially local-
ized around x ¼ 0 with a characteristic proper length L.
We must stress that the introduction of the cosine factor in
(19) is intended only as a solution to the problem of the
unphysical suppression of the transition rates. We do not
claim that such a spatial profile is realized, for instance, in
inertially moving two-level atoms (where the pointlike
approximation is often valid and enough to produce physi-
cal results). However, this will not be the case when the
UdW detector is used to model more exotic systems where
the wavelength of the absorbed and emitted radiation is
comparable with the size of the physical system. The
problem of considering the physical form of FðxÞ for
regular atoms was tackled in Sec. II.

0

0.2

0.4

0.6

0.8

1

FIG. 2 (color online). A not so localized F̂ðkÞ centered in 0
would introduce an asymmetry in the detection of frequencies
!k ¼ �� �, k ¼ ��=c.

0

0.2

0.4

0.6

0.8

1

FIG. 3 (color online). A localized F̂ðkÞ can be not centered in 0
by introducing an oscillating term in the spatial profile seen in
the inset. The figure shows symmetric detection zones centered
in k ¼ ��=c.
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Notice that we are not deriving this effective coupling
from first principles. Rather, we are pointing out the limits
of applicability of the UdW model to describe extended
detectors when the wavelength of the radiation is compa-
rable to their physical extension, and suggesting a way in
which the phenomenology of such detectors can be effec-
tively recovered. One can, however, understand this as a
process of ‘‘antennization’’ (classical antennae, that are
comparable with the wavelength of the radiation they are
tuned to detect, have some periodical structure related to
the wavelength they are resonant with). We are providing
the extended detector with a spatial periodicity related
to the radiation the detector is tuned to.

V. ACCELERATED DETECTORS

In order to provide a complete description of the
localized detector model proposed in this article, in this
section we will describe how to use this model to analyze
arbitrary signals with a spatially smeared uniformly accel-
erated detector.

There is a well-known problem with accelerating
rigid bodies: the proper distance between two points of a
solid accelerating with the same relativistic accelera-
tion increases with time, eventually destroying the solid
when the internal tension it supports is overrun by the
relativistic effects.

The reasonable hypothesis for a physical detector is that
it has to keep internal coherence. This means that the
internal forces that keep the detector together will prevent
it from being further smeared due to relativistic effects up
to some reasonable acceleration regimes. That means that,
effectively, every point of the detector will accelerate with
a different acceleration in order to keep up with the rest of
its points. The natural formalism to treat this detector is the
use of the well-known Fermi-Walker coordinates [9,18].

Thus, the interaction Hamiltonian of a smeared uni-
formly accelerated rigid detector is

HIðtÞ ¼ g
Z dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!kð2�Þ
p Z

dFðÞð�þei�� þ ��e�i��Þ

� ðayk eið!ktð;�Þ�kxð;�ÞÞ þ ake
�ið!ktð;�Þ�kxð;�ÞÞÞ;

(22)

where � ¼ ð; 0; 0Þ and � are the Fermi-Walker coordi-
nates associated with the trajectory of the detector.

These coordinates have the particularity that at every
point on the trajectory xð�Þ ¼ ðctð�Þ; xð�Þ; 0; 0Þ the hyper-
plane which is orthogonal to the 4-velocity uð�Þ ¼
ðc _tð�Þ; _xð�Þ; 0; 0Þ is the three-dimensional space which con-
sists of all the events which are simultaneous to xð�Þ, where
simultaneity is judged from the comoving inertial frame.
We assume that we move only in one direction, so that
1 ¼ , 2 ¼ y ¼ 0, 3 ¼ z ¼ 0.

If we attach a dreibein to every such hyperplane

e1
¼ ðc�1 _xð�Þ; _tð�Þ; 0; 0Þ; e2

¼ ð0; 0; 1; 0Þ;
e3

¼ ð0; 0; 0; 1Þ; (23)

we can characterize every event xe in a neighborhood of
the trajectory with ð�e;�eÞ.
These coordinates guarantee a rigid detector (where

rigidity means that its 3-geometry as seen from its own
momentary rest system is unchanged in the course of
proper time). In contrast, in a Rindler frame (standard
approach for pointlike detectors) every point of the detec-
tor accelerates with a different proper acceleration, so they
cannot account for rigid detectors that have internal coher-
ence. In the Fermi-Walker frame the detector will accel-
erate coherently, so this models very well what would
happen to an accelerated rigid body.
The change of coordinates between the inertial system to

the Fermi-Walker frame is given by

x ð�;�Þ ¼ xð�Þ þ ieið�Þ; tð�;�Þ ¼ tð�Þ þ ie0i
c

:

(24)

For the uniformly accelerated observer, the trajectory
(parametrized in terms of comoving time) is

xð�Þ ¼
�
c2

a
sinh

�
a�

c

�
;
c2

a
cosh

�
a�

c

�
; 0; 0

�
: (25)

The only relevant component of the dreibein is

e1
¼

�
sinh

�
a�

c

�
; cosh

�
a�

c

�
; 0; 0

�
: (26)

So, directly from (24) we read the change of coordinates

tð�; Þ ¼
�
c

a
þ 1

c

�
sinh

�
a�

c

�
;

xð�; Þ ¼
��

c2

a
þ 1

�
cosh

�
a�

c

�
; 0; 0

�
:

(27)

Within this scheme we compute the probability of exci-
tation of an accelerated detector responding to an arbitrary
signal. In first order perturbation theory,

P ¼ jgj2
Z �

�0

d�0
Z �

�0

d�00ei�ð�0��00Þhyj�ð�00Þ�ð�0Þjyi; (28)

�ð�Þ ¼
Z Fð�Þdkdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2cjkjð2�Þp ðakeiðk�xð�;�Þ�cjkjtð�;�ÞÞ þ H:c:Þ;

(29)

where jyi is a general superposition of plane-wave field
modes corresponding to a Minkowskian-shaped wave-
packet, prepared in the lab, that we want to analyze with
our detector

MARTÍN-MARTÍNEZ, MONTERO, AND DEL REY PHYSICAL REVIEW D 87, 064038 (2013)

064038-6



jyi ¼
�Z

dkyðkÞayk
�
j0i: (30)

Let us evaluate the time-correlation function
Wyð�0; �00Þ 
 hyj�ð�00Þ�ð�0Þjyi. The two  integrals can

be rewritten in terms of Fourier transforms greatly simpli-
fying the expression of Wyð�0; �00Þ. To do this we first

note that

kxð; �Þ � cktð; �Þ ¼ Lðk; �Þ
�
þ c2

a

�
;

Lðk; �Þ ¼ kea�=c:

(31)

Considering that ! ¼ ck, then the complex exponential
argument depending on � as taken directly from the am-
plitude in (29) and (31) goes as

��þ c!

a
e�a�=c: (32)

So, taking derivatives, the condition for the stationary
phase is as follows:

��!e�a�=c ¼ 0: (33)

Now the condition is no longer time independent as in
the inertial case [17]. Instead the resonance frequency !R

will be

!R ¼ �ea�=c; (34)

which is obviously the inertial resonance frequency but
nontrivially Doppler shifted due to the acceleration.

Now if we define G�ðk; �Þ ¼ F̂½�Lðk; �Þ�, where F̂ðkÞ
is the Fourier transform of FðÞ as in (15), we can rewrite

Wxð�0; �00Þ ¼
Z �yðkÞyð�Þdkd�

2ð2�Þc ffiffiffiffiffiffiffiffiffiffiffiffijkjj�jp Gþðk; �00ÞG�ð�; �0Þeic2a ½Lð�;�0Þ�Lðk;�00Þ� þ
Z jyð�Þj2dkd�

2ð2�Þcjkj Gþðk; �0ÞG�ðk; �00Þeic2a ½Lðk;�00Þ�Lðk;�0Þ�

þ
Z �yðkÞyð�Þdkd�

2ð2�Þc ffiffiffiffiffiffiffiffiffiffiffiffij�jjkjp Gþð�; �0ÞG�ðk; �00Þeic2a ½Lðk;�00Þ�Lð�;�0Þ�;

which can be further simplified if FðkÞ ¼ Fð�kÞ (true for a Gaussian or Lorentzian profile), then we get Gþ ¼ G� ¼ G
[although in generalGðkÞ � Gð�kÞ], and if the frequency profile of the signal yð!Þwewant to analyze is chosen to be real,
we can rewrite

Wxð�0; �00Þ ¼
Z yðkÞyð�Þdkd�

ð2�Þc ffiffiffiffiffiffiffiffiffiffiffiffijkjj�jp Gðk; �00ÞGð�; �0Þ cos
�
Lð�; �0Þ � Lðk; �00Þ

ac�2

�

þ
Z ½yð�Þ�2dkd�

2ð2�Þcjkj Gðk; �0ÞGðk; �00Þeic2a ½Lðk;�00Þ�Lðk;�0Þ�; (35)

providing an operative expression for the response of a
localized accelerated detector to a given signal.

VI. CONCLUSIONS

In this work, we have analyzed the problem of wave-
packet detection by an UdW model.

By appealing to phenomenological considerations, we
have argued that in scenarios where our detector has to
respond to a given frequency, the spatial profile considered
must verify certain properties. In particular, we have studied
the origin of such a profile function for the case of an atomic
detector by taking the task of deriving an UdW equation
fromfirst principles, relating the smearedUdWmodel to the
usual p �A form of the QED interaction coupling atoms to
the electromagnetic field. We have shown what differences
between themodels actually result from this calculation. As
an outcome, we have shown a way of relating the smearing
profile used in the UdW case with the electronic wave
function of the relevant orbitals of an atom.

Going beyond this atomic example, and especially,
when considering the case of detectors comparable with

the wavelength to which they are tuned, we show that some

information about the spectral response of the detector

must be fed in general to the spatial profile. Otherwise

the detector will not have the expected behavior and will

dramatically fail to detect radiation on resonance with the

two-level system transition.
To solve these problems, we suggest introducing a spa-

tial oscillation of the profile, which will make the detector
tune to the resonance frequency regardless of its size
and configuration.
Not all the spatial profiles for the UdW model would be

compatible with the experimental response of accelerated
particle detectors: the existence of some monopole (or
dipolar) momentum that couples the atom to the field with
a given characteristic transition frequency requires those
oscillations introduced in the spatial profile to reproduce
spectra centered in the characteristic transition frequency of
the detector. If one thinks of that profile as being something
like a charge distribution, then those oscillations would be
the responsible for the appearance of the momentum that
correctly couples it to the field.
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Completing our proposal, we have explained how
to use this formalism while calculating the probability
of detection of a wavepacket for an accelerated detector.

Finally note that, in parallel with this work, an analysis
of the transition rates of smeared UdW detectors coupled to
different kinds of physical field modes and undergoing
different relativistic motion is being carried out by Lee
and Fuentes [19].
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