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Abstract This paper presents an extension of a recently developed high order finite differ-
ence method for the wave equation on a grid with non-conforming interfaces. The stability
proof of the existing methods relies on the interpolation operators being norm-contracting,
which is satisfied by the second and fourth order operators, but not by the sixth order operator.
We construct new penalty terms to impose interface conditions such that the stability proof
does not require the norm-contracting condition. As a consequence, the sixth order accurate
scheme is also provably stable. Numerical experiments demonstrate the improved stability
and accuracy property.

Keywords Second order wave equation · SBP-SAT finite difference · Non-conforming ·
Multi-block

Mathematics Subject Classification 65M06 · 65M12

1 Introduction

Wave propagation can be modeled by hyperbolic partial differential equations (PDEs). When
solving a hyperbolic PDE by a finite difference method, to achieve a certain accuracy a
minimum number of grid points per wavelength is required. This number is smaller with a
high order method than with a low order method, which makes high order finite difference
methods more efficient to solve wave propagation problems on smooth domains, see the
pioneering paper [17] for first order hyperbolic PDEs, and the recent work [13] for second
order hyperbolic PDEs.
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On a uniform grid, high order central finite difference stencils are easily constructed by
Taylor expansions [9]. Close to boundaries, one-sided stencils can be used. It is important that
the boundary closure is accurate, and the numerical scheme is stable. One successful approach
is to use a finite difference operator satisfying a summation-by-parts (SBP) property [19].
When an SBP operator acts on a grid function, it mimics the integration-by-parts principle
in the continuous setting. An energy estimate can be obtained if boundary conditions are
imposed appropriately, for example by using the simultaneous-approximation-term (SAT)
method [4] or ghost points [30]. A scheme satisfying an energy estimate is called energy
stable [11,12].

Finite difference methods in the basic form can only be used on box-shaped domains.
When complex geometry is present, the domain can be partitioned into blocks to resolve
the geometrical feature. Each block has four sides and is mapped to a reference domain. If
the corners of adjacent blocks meet, we say they are conforming blocks; otherwise they are
non-conforming. In addition, a grid interface is conforming if no hanging nodes are present.
When partitioning a domain, we can always make the blocks and interfaces conforming.
However, in many situations it is desirable to use a more flexible strategy of partition that
leads to non-conforming blocks and grid interfaces.

As an example, we consider a wave traveling in a heterogeneous medium with the wave
speed varying in space. The wavelength is proportional to the wave speed for a given fre-
quency. For accuracy the grid spacing is determined by the shortest wavelength. If a uniform
grid is used in the entire computational domain, then the grid spacing must be small enough
to resolve the shortest wavelength, resulting in an unnecessarily fine grid elsewhere. It is then
more efficient to construct a grid according to the wavelength in each block, which leads to
non-conforming interfaces with hanging nodes.

If only conforming blocks are used, the domain partitioning may end up with many blocks
of small size. To use a high order finite difference method, a minimum number of grid points
is required in each block due to the stencil width. This then results in unnecessarily many
grid points in the small blocks, and consequently a suboptimal performance of the numerical
scheme. In such a situation, non-conforming blocks are more appropriate.

In an SBP finite difference method, interface conditions can also be imposed by the
SAT method [5,6] or ghost points [29]. In the SBP-SAT framework, wave propagation in a
heterogeneous medium with complex geometry is considered in [34]. A stable and accurate
multi-block finite difference method with conforming grid interfaces and blocks is presented.
The focus in [37] is the numerical treatment of non-conforming interfaces and blocks by
using SBP-preserving interpolation operators [16,22]. Energy stability is proved with an
assumption that the interpolation operators are norm-contracting. In the same paper [37] , it
is verified that not all interpolation operators satisfy this assumption, and instability occurs
when the sixth order method is used on a domain with non-conforming, curved interfaces.

In this paper, we construct new penalty terms in the SBP-SAT finite difference framework
for the numerical interface treatment. The resulting scheme is energy stable even when the
interpolation operators are not norm-contracting. This extends the provably stable scheme
from fourth order accuracy [37] to sixth order accuracy. The technique can be potentially
used to construct even higher order schemes, provided that the corresponding SBP operators
exist. Another contribution of this paper is the numerical treatment of non-conforming blocks
and interfaces on curvilinear grids, where as in [37] such a case is studied on Cartesian grids.
We also conduct numerical experiments to verify that the new sixth order scheme is stable
with non-conforming, curved interfaces.

The paper is organized as follows. In Sect. 2, we introduce the SBP-SAT finite difference
method. In Sect. 3, we consider the wave equation on a Cartesian grid and present the new
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penalty terms for numerical interface treatments. Stability is proved by the energy method.
We then generalize the scheme to non-conforming blocks and grid interfaces on curvilinear
grids in Sect. 4. Numerical experiments are presented in Sect. 5 to verify the stability and
accuracy property of the developed scheme. We draw conclusion in Sect. 6.

2 SBP-SAT Finite Difference Methods

Finite difference operators satisfying an SBP property have been widely used to discretize
time dependent PDEs. An SBP operator has central finite difference stencils in the interior,
and special one-sided stencils at a few grid points near boundaries. The boundary stencils
are chosen so that the operator satisfies a summation-by-parts property, which is the discrete
counterpart of the integration-by-parts principle. With the SAT method imposing boundary
and interface conditions, the SBP-SAT finite difference method possesses a great advantage:
it is possible to prove energy stability for high order accurate schemes for initial-boundary-
value problems.

To introduce the SBP-SAT finite difference method, we consider the one dimensional
domain [0, 1] discretized by the grid points x j = jh, j = 0, 1, . . . , N with a constant
grid spacing h = 1/N . We use the capital letter, for example, U , to denote a smooth
function in [0, 1], and the corresponding small letter, u, to denote its values on the grid
u = [U (x0),U (x1), . . . ,U (xN )]T .
2.1 Definitions of SBP Operators

The SBP concept and the first derivative SBP operator D1 ≈ ∂/∂x are introduced in [19],
and later refined in [32]. Formally it is defined as follows.

Definition 1 A difference operator D1 = H−1Q approximating ∂/∂x is a diagonal
norm first derivative SBP operator if H is diagonal positive definite and Q + QT =
diag(− 1, 0, . . . , 0, 1).

The operator H defines the SBP norm, and leads to the identity

uT HD1v = −(D1u)T Hv − u0v0 + uNvN , (1)

which is the discrete analogue of the integration-by-parts formula
∫ 1

0
UVxdx = −

∫ 1

0
UxVdx −U (0)V (0) +U (1)V (1),

since the norm H is also a quadrature [7,14].
For the second derivative, we distinguish between a constant coefficient operator D2 ≈

∂2/∂x2 and a variable coefficient operator D(b)
2 ≈ ∂/∂x(b(x)∂/∂x) with a known function

b(x) > 0.

Definition 2 A difference operator D2 = H−1(−M+ BS) approximating ∂2/∂x2 is a diag-
onal norm second derivative SBP operator if H is diagonal positive definite, M is symmetric
positive semi-definite, B = diag(− 1, 0, . . . , 0, 1), and the first and last row of S approximate
∂/∂x at the two boundaries, respectively.

Such an operator is constructed in [25]. It is later found in [3,23] that the operator M in D2

satisfies the following property.
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Lemma 1 The symmetric positive semi-definite operator M can be written as

M = M̃ + hθ(BS)T BS,

where M̃ is also symmetric positive semi-definite, θ > 0 is a constant independent of h, B
and S are the same as in Definition 2.

Lemma 1 is often referred to as the borrowing trick, as we can borrow from the positive
semi-definite operator M a small, mesh dependent amount, with the resulting operator M̃
still positive semi-definite. This property is essential for energy stability of problems with
interfaces or Dirichlet boundary conditions.

For the variable coefficient case we have correspondingly

Definition 3 Adifference operatolr D(b)
2 = H−1(−M (b)+B(b)S) approximating ∂/∂x(b(x)

∂/∂x) is a diagonal norm second derivative variable coefficient SBP operator if H is diagonal
positive definite, M (b) is symmetric positive semi-definite, B(b) = diag(−b(x0), 0, . . . , 0, b
(xN )), and the first and last row of S approximate ∂/∂x at the two boundaries, respectively.

Such an operator is constructed in [22], and the operatorM (b) has the following two important
properties [34].

Lemma 2 The symmetric positive semi-definite operator M (b) can be written as

M (b) = M̃ (b) + hσbm(BS)T BS,

where M̃ is also symmetric positive semi-definite, σ > 0 is a constant independent of h, B
and S are the same as in Definition 2, and

bm = min(b(x0), b(x1), . . . , b(xl), b(xN ), b(xN−1), . . . , b(xN−l))

with a constant l independent of h.

Lemma 2 for the variable coefficient SBP operators is an analogue of Lemma 1 for the
constant coefficient case. We note that bm is the smallest value of the variable coefficient
b(x) on the first and last l grid points. The smaller bm is, the less we can borrow from M (b).

Lemma 3 The SBP operator D(b)
2 is compatible with D1 if M (b) can be written as

M (b) = DT
1 B(b)HD1 + R(b),

where R(b) is symmetric positive semi-definite, and B(b) is the same as in Definition 3.

Lemma 3 is essential for energy stability when mixed derivatives are present in the equation,
for example the wave equation on curvilinear grids and the elastic wave equation.

The definitions and precise forms of the above operators can be found in [19,21,22,25,32].
These operators have the minimal interior stencil width. In addition, they have the same
associated norm H for a given accuracy order. In the stability analysis, we only consider
numerical treatment of interface conditions.As a consequence, the operator B in the preceding
lemmas only has one nonzero element, corresponding to the terms on the interface.

The interior stencil of an SBP operator is the standard central finite difference stencil with
truncation error O(h2p). On a few grid points near boundaries, special one-sided stencils
are used to fulfill the SBP requirement with a larger truncation error O(h p). Operators D1

and D2 with p = 1, 2, 3, 4 are constructed in [19,32] and [25], respectively. The variable
coefficient operators D(b)

2 with p = 1, 2, 3 are constructed in [21].

123



J Sci Comput (2018) 77:775–792 779

In this paper, we call the above SBP operators 2pth order accurate. When using in a
numerical scheme, we also call the scheme 2pthorder accurate, even though the truncation
error of the numerical scheme may not be O(h2p) or O(h p). In the discussion of accuracy,
we make the truncation error of the scheme precise.

2.2 The SAT Method

An SBP operator only approximates a certain derivative, but does not impose any boundary
condition. The boundary conditions must be imposed carefully so that an energy estimate
can be obtained to ensure stability. This can be done by for example the SAT method [4], the
projection method [26–28] and the ghost points method [29]. In this paper, we choose the
SATmethod to impose both boundary and interface conditions, since in many cases it is easy
to derive an energy estimate. The key ingredient of the SAT method is to add penalty terms
to the semi-discretized equation and choose penalty parameters so that an energy estimate
is obtained. This technique bears a similarity to the Nitsche’s finite element method [31],
and the discontinuous Galerkin method [2,10]. Detailed discussions of the SBP-SAT finite
difference methods can be found in [8,33].

3 The Wave Equation on a Cartesian Grid

We start by considering the wave equation in two space dimensions in a composite domain
� = [0, 1]2 with an interface � at x = 0.5. The left and right domain are denoted by �u and
�v , respectively, and the equations are

Utt = Uxx +Uyy, (x, y) ∈ �u, (2)

Vtt = Vxx + Vyy, (x, y) ∈ �v. (3)

At the interface the physical conditions are

U (0.5, y, t) = V (0.5, y, t), Ux (0.5, y, t) = Vx (0.5, y, t). (4)

For a wellposed problem, suitable boundary conditions must be imposed at the boundaries.
As the focus in this paper is the numerical treatment of interface coupling, we exclude
discussions on boundary conditions and the corresponding numerical techniques. We refer
to [18] for physical boundary conditions, and [24] for the numerical techniques.

To solve (2)–(4),we start by generating aCartesian grid in each domain independentlywith
nux ×nuy grid points in�u and nvx ×nvy grid points in�v . We are particularly interested in
a non-conforming interface when nuy �= nvy . In this case, the solutions on the interface must
be interpolated. We denote Iu2v and Iv2u interpolation operators that interpolate the solution
from�u to�v , and from�v to�u , respectively. In the SBP-SATfinite difference framework,
these operators must satisfy certain conditions so that the scheme could be energy stable.

Definition 4 Let Hu and Hv denote the SBP norms on the interface for the grid in �u and
�v , respectively. The interpolation operators Iu2v and Iv2u are norm-compatible if

Hu Iv2u = (Hv Iu2v)
T . (5)

In [37], it is also defined that the interpolation operators are norm-contracting if the two
operators

Hu(Iu − Iv2u Iu2v) and Hv(Iv − Iu2v Iv2u)

are symmetric positive semi-definite, where Iu and Iv are identity operators.
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Norm-compatible interpolation operators are first constructed in [22] for the case of a 1:2
mesh refinement ratio, and are extended to an arbitrary ratio in [16]. The accuracy property
of these interpolation operators has a similar fashion as the corresponding SBP operators.
More precisely, the interpolation error is O(h2p) in the interior of the interface, and O(h p)

on a few grid points near the edge of the interface. Therefore, the interpolation is exact only
for polynomials of order up to p − 1. In [20], it is proved that it is not possible to construct
norm-compatible interpolation operators Iu2v and Iv2u such that both interpolate polynomials
of order p or higher.

A stable SBP-SAT finite differencemethod for solving (2)–(4) is presented in [37]. Energy
stability is proved by assuming the interpolation operators are norm-compatible and norm-
contracting. While the norm-compatible condition can be constrained when constructing
the operators, it is not easy to take into account the norm-contracting condition. In fact,
the interpolation operators with higher than fourth order accuracy in [16,22] are not norm-
contracting.

Below we present a new way of imposing the interface conditions (4) with the advantage
that an energy estimate is obtained without requiring the interpolation operators to be norm-
contracting. For cleaner notations, terms imposing boundary conditions are omitted.

Equation (2)–(4) are discretized in space as

utt = Duu + SATu1 + SATu2 + SATu3 + SAT∂u, (6)

vt t = Dvv + SATv1 + SATv2 + SATv3 + SAT∂v, (7)

where

SATu1 = 1

2
H−1
ux STux(Euxu − (Euv ⊗ Iv2u)v), (8a)

SATu2 = − τ

2
H−1
ux (Euxu − (Euv ⊗ Iv2u)v), (8b)

SATu3 = − τ

2
H−1
ux ((Eux ⊗ (Iv2u Iu2v))u − (Euv ⊗ Iv2u)v), (8c)

SAT∂u = − 1

2
H−1
ux (Eux Suxu − (Euv ⊗ Iv2u)Svxv), (8d)

and

SATv1 = − 1

2
H−1
vx STvx(Evxv − (Evu ⊗ Iu2v)u), (9a)

SATv2 = − τ

2
H−1
vx (Evxv − (Evu ⊗ Iu2v)u), (9b)

SATv3 = − τ

2
H−1
vx ((Evx ⊗ (Iu2v Iv2u))v − (Evu ⊗ Iu2v)u), (9c)

SAT∂v = 1

2
H−1
vx (Evx Svxv − (Evu ⊗ Iu2v)Suxu). (9d)

The numerical solution vectors u and v approximate the true solutionU and V , respectively.
The solution vectors are arranged column-wise, i.e. the first few elements of u and v corre-
spond to the solutions on the left boundary of �u and �v , respectively. Most operators in
two space dimensions can be extended from the corresponding one dimensional operators by
using a Kronecker product ⊗. Such two dimensional operators are denoted by bold letters,
with the subscript indicating the spatial direction and the grid function that the operator is
associated to. For example, the operator H−1

ux equals to H−1
ux ⊗ Iuy , where H−1

ux is the inverse
of the SBP norm in the x-direction acting on u, and Iuy is an identity operator. The operator
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E extracts the numerical solution at the interface. Duu and Dvv are SBP approximations of
Uxx +Uyy and Vxx + Vyy , respectively.

We compare the above schemewith the ones described in [34,37] by discussing the penalty
terms (8a)-(8d). A term like Euxu used in [34,37] is broken into two parts: 1/2Euxu in (8b)
and 1/2Eux ⊗ Iv2u Iu2vu in (8c). Note the relation between them: Eux ⊗ Iv2u Iu2vu is just
Euxu interpolated to the grid on the interface of�v , then interpolated back to the grid of�u .
Since the interpolation is not exact, Eux ⊗ Iv2u Iu2vu differs from Euxu by the truncation
error of the interpolation operators. It is this change in penalty terms that makes the scheme
stable without requiring the interpolation operators to be norm-contracting. We summarize
the stability result in the following theorem.

Theorem 1 With norm-compatible interpolation operators, the semi-discretization (6)-(7)
is stable for any τ such that

τ ≥ max

(
1

2θhux
,

1

2θhvx

)
, (10)

where θ is the constant in Lemma 1, and hux and hvx are the mesh size in the x-direction in
�u and �v , respectively.

Proof Weprove stability by the energymethod.Multiplying from the left of (6) by uTt (Hux ⊗
Huy) and (7) by vTt (Hvx ⊗ Hvy), we obtain

uTt (Hux ⊗ Huy)utt + vTt (Hvx ⊗ Hvy)vt t

= uTt (Hux ⊗ Huy)Duu + vTt (Hvx ⊗ Hvy)Dvv

+ 1

2
uTt HuySTux(Euxu − (Euv ⊗ Iv2u)v)

− τ

2
uTt Huy(Euxu − (Euv ⊗ Iv2u)v)

− τ

2
uTt Huy((Eux ⊗ (Iv2u Iu2v))u − (Euv ⊗ Iv2u)v)

− 1

2
uTt Huy(Eux Suxu − (Euv ⊗ Iv2u)Svxv)

− 1

2
vTt Hv ySTvx(Evxv − (Evu ⊗ Iu2v)u)

− τ

2
vTt Hv y(Evxv − (Evu ⊗ Iu2v)u)

− τ

2
vTt Hv y((Evx ⊗ (Iu2v Iv2u))v − (Evu ⊗ Iu2v)u)

+ 1

2
vTt Hv y(Evx Svxv − (Evu ⊗ Iu2v)Suxu).

We note that the left-hand side of the above equation can be written as the time derivative
of a quadratic term. The main idea of deriving an energy estimate is to move all terms on
the right-hand side to the left, and determine the penalty parameter τ so that all terms on the
left-hand side can be written as the time derivative of a non-negative quantity, i.e. the discrete
energy.

To do so, we use the borrowing trick in Lemma 1 for the SBP operators in the x-direction,
and the norm-compatible property (5) of the interpolation operators, to obtain the change of
energy G as
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d

dt
G = d

dt
(G1 + G2 + G3) = 0, (11)

where

G1 = uTt (Hux ⊗ Huy)ut + vTt (Hvx ⊗ Hvy)vt

+ uT (Hux ⊗ Muy)u + vT (Hvx ⊗ Mvy)v

+ uT (M̃ux ⊗ Huy)u + vT (M̃vx ⊗ Hvy)v,

G2 = huxθ(Eux Suxu)Huy(Eux Suxu)

− (Eux Suxu)T Huy(Euxu − (Euv ⊗ Iv2u)v)

+ τ

2
(Euxu − (Euv ⊗ Iv2u)v)T Huy(Euxu − (Euv ⊗ Iv2u)v),

G3 = hvxθ(Evx Svxv)Hv y(Evx Svxv)

− (Evx Svxv)T Hv y((Evu ⊗ Iu2v)u − Evxv)

+ τ

2
((Evu ⊗ Iu2v)u − Evxv)T Hv y((Evu ⊗ Iu2v)u − Evxv).

Clearly, G1 ≥ 0. By Young’s inequality, we have G2 ≥ 0 and G3 ≥ 0 if τ ≥ 1/(2θhux ) and
τ ≥ 1/(2θhvx ), respectively. Therefore, the energy is conserved and the scheme is stable
when (10) is satisfied. ��

We note that in the scheme developed in [37] the energy is greater or equal toG in (11), with
the inequality resulted from the norm-contracting condition.

4 The Wave Equation on Curvilinear Grids

In this section, we generalize the scheme to problems on curvilinear grids. We consider two
cases: conforming blocks and non-conforming blocks, which are illustrated in Fig. 1a, b,
respectively.

4.1 Numerical Interface Treatment of Conforming Blocks

With only conforming blocks in the domain, the corners of adjacent blocksmeet.We consider
again the domain� = [0, 1]2 but partitioned into two blocks�u and�v by a curved interface.
The grids are then constructed independently in each block, see an illustration in Fig. 1a.
The grids in each block are mapped to a Cartesian grid in a reference domain. The governing
equations are also transformed from the physical domain to the reference domain, and the
computation is performed in the reference domain.We refer to the textbook [15] for a detailed
discussion on grid generation.

The transformed equation in the reference domain can be derived by using the chain rule
in calculus. We omit its derivation, and refer to [1]. With (x, y) denoting the coordinate in
the reference domain, the unknown variables U and V are governed by the equation

JUUtt = (aUx )x + (cUy)y + (bUy)x + (bUx )y,

JV Vtt = (αVx )x + (γ Vy)y + (βVy)x + (βVx )y,
(12)
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(a) (b)

Fig. 1 Non-conforming interfaces with a conforming blocks, b non-conforming blocks

where the Jacobians JU , JV > 0 and the variable coefficients satisfy ac − b2 > 0 and
αγ − β2 > 0. The interface conditions become

U = V,

aUx + bUy = αVx + βVy,
(13)

on (x, y) ∈ �. The coefficients in (12) consist of metric derivatives that depend on the
geometry of the physical domain and the transformation. The metric derivatives can either
be computed analytically, or approximated to sufficient high accuracy. In the experiments
in this paper, we choose the latter approach by using a tenth order finite difference stencil,
making sure that the approximation of metric terms does not affect the overall accuracy of
the numerical scheme.

As shown in [34], the equation (12) together with the interface condition (13) admit a

continuous energy estimate, thanks to the positive definiteness of the matrices

[
a b
b c

]
and

[
α β

β γ

]
because of ac − b2 > 0 and αγ − β2 > 0.

The equations in (12) are discretized by using the SBP operators, and the two blocks are
patched together by the SAT method. The semi-discretized equations are

Juutt = (D(a)
2ux )u + (D(c)

2uy)u + D1ux�bD1uyu + D1uy�bD1uxu + SATu,

Jvvt t = (D(α)
2vx )v + (D(γ )

2vy)v + D1vx�β D1v yv + D1v y�β D1vxv + SATv,

(14)

where

SATu = 1

2
H−1
ux H−1

uy (�aEux Sux + �bEux D1uy)
T Huy(Euxu − (Euv ⊗ Iv2u)v)

− τ

2
H−1
ux ((Eux ⊗ (Iv2u Iu2v))u − (Euv ⊗ Iv2u)v)

− τ

2
H−1
ux (Euxu − (Euv ⊗ Iv2u)v)

− 1

2
H−1
ux ((�aEux Sux+�bEux D1uy)u

− (Euv ⊗ Iv2u)(�αEvx Svx + �β Evx D1v y)v),

(15)
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and

SATv = − 1

2
H−1
vx H−1

v y (�αEvx Svx + �β Evx D1v y)
T Hv y(Evxv − (Evu ⊗ Iu2v)u)

− τ

2
H−1
vx ((Evx ⊗ (Iu2v Iv2u))v − (Evu ⊗ Iu2v)u)

− τ

2
H−1
vx (Evxv − (Evu ⊗ Iu2v)u)

+ 1

2
H−1
vx((�αEvx Svx + �β Evx D1v y)v

− (Evu ⊗ Iu2v)(�aEux Sux + �bEux D1uy)u).

(16)

We now clarify the notations in the semi-discretization (14).

1. The mixed-derivative terms: (bUy)x is approximated by D1ux�bD1uyu, where �b is
a diagonal matrix with diagonal entries b(x, y) evaluated on the grid. The operators
approximating the other three mixed-derivative terms are constructed in a similar way.

2. The variable-coefficient terms: In general the variable coefficients are functions of both
x and y, therefore an operator approximating (aUx )x cannot be constructed by a single
Kronecker product, but as a sum

D(a)
2ux =

nuy∑
i=1

D(ai )
2ux ⊗ Ei

uy,

where ai is a(xi , y) evaluated on the grid, and Ei
uy has value one in entry (i, i) and

zeros elsewhere. The second derivative operator D(ai )
2ux is defined in Definition 3 with the

operator M (ai ) satisfying Lemma 2 and 3. The operators approximating the other three
variable coefficient terms are constructed in a similar way.

3. The penalty terms: The two interpolation operators Iu2v and Iv2u constructed in [16,22]
satisfy the norm-compatible condition

Huy Iv2u = (Hvy Iu2v)
T .

Similar to the continuous case, the matrices �u =
[
�a �b

�b �c

]
and �v =

[
�α �β

�β �γ

]
are

positive definite. In fact, the eigenvalues of �u and �v play an important role in the stability
analysis. In particular, we will use the smallest eigenvalue

δ = 1

2
min

(
ai j + ci j −

√
(ai j − ci j )2 + 4b2i j , αkl + γkl −

√
(αkl − γkl)2 + 4β2

kl

)
, (17)

where i = 1, 2, . . . , nux , j = 1, 2, . . . , nuy, k = 1, 2, . . . , nvx , l = 1, 2, . . . , nvy . Note
that δ > 0, ai j − δ ≥ 0 and αi j − δ ≥ 0.

Let amax, bmax, αmax and βmax denote the maximum values of the variable coefficients
a(x, y), b(x, y), α(x, y) and β(x, y) evaluated on the interface, respectively. We also denote
hux and hvx the mesh size in the x-direction in �u and �v , respectively. Stability of the
semi-discretization is given by the following theorem.

Theorem 2 The semi-discretization (14)–(16) is stable if the interpolation operators Iu2v
and Iv2u are norm-compatible and the penalty parameter τ satisfies

τ ≥ max

(
a2max + b2maxhuxσ

2huxσδ
,
α2
max + β2

maxhvxσ

2hvxσδ

)
,
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where σ is defined in Lemma 2, and δ is defined in (17).

Proof See “Appendix”. ��
We remark that it is possible to use a penalty parameter that varies on grid points, and such

a scheme is proposed in [34] for problemswith conforming interfaces. The penalty parameter
τ used in Theorem 2 corresponds to the largest value on all grid points. We also note that
when the penalty parameter is chosen to be equal to the stability limit, accuracy deduction
has been observed, and proved in some settings by a normal mode analysis [35]. Though
there is no upper bound of τ for energy stability, a very large penalty parameter increases the
spectral radius of the spatial discretization, and leads to a small time step.

For accuracy, the SBP operators have truncation error O(h2p) in the interior and O(h p)

near the boundaries and the interface. The interpolation operators constructed in [16,22]
have truncation errorO(h2p) in the interior of the interface, and truncation errorO(h p) on a
few grid points near the edge of the interface. Therefore, in the semi-discretization (14), the
largest truncation error isO(h p−2) introduced by the first three penalty terms in (15) and (16)
because of τ, H−1

ux , H−1
uy ∼ O(h−1). The truncation errorO(h p−2) is only localized on a few

number of grid points at the corner of two adjacent blocks. According to the accuracy analysis
in [36], we may expect a rate of convergence p + 1 of the semi-discretization (14), the same
as the scheme developed in [37]. Note that the p + 1 convergence rate is one order lower
than the expected convergence rate when the grid interface is conforming. If the interpolation
error at the edge could be improved toO(h p+1), then the expected rate of convergence would
be p + 2. However, it is proved in [20] that such norm-compatible interpolation operators
cannot be constructed.

4.2 Numerical Interface Treatment of Non-conforming Blocks

An example of non-conforming blocks is shown in Fig. 1b. The lower left corner of the upper
right domain sits in the middle of the right boundary of the left domain. Such an interface
configuration is sometimes called a T-junction interface.

For a T-junction interface, the interface conditions must be imposed on the glue grid,
which is different from what is usually done for conforming blocks. The technique and the
corresponding interpolation operators are constructed in [16], and are used for a T-junction
interface on a Cartesian grid in [37]. On a curvilinear grid, the discretization is performed in
a similar way, but the grid transformation must be done carefully.

Coordinate transformation is performed block-wise, therefore an interface between two
blocks is transformed twice. A common strategy is to transform each block in the physi-
cal domain to the unit square in the reference domain. This works well with conforming
blocks. However, with nonconforming blocks such as in Fig. 1b the interfaces are trans-
formed differently in different blocks. As a consequence, the transformed equation must
be scaled as explained in [16] to obtain an energy stable scheme. The energy stable
semi-discretization can then be constructed in a similar way as in the preceding sec-
tions.

5 Numerical Experiments

In this section, numerical experiments are performed to verify the stability and accuracy
property of the numerical schemes developed in this paper. The diagonal norm SBP operators
used in the numerical experiments can be found in [32] for D1 ≈ ∂/∂x and in [21] for
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Fig. 2 a A composite domain with an extreme interface. b Mesh

D(b)
2 ≈ ∂/∂x(b(x)∂/∂x). The interpolation operators can be found in [16,22]. The L2 errors

are computed as the norm of the difference between the exact solution uex and the numerical
solution uh according to

‖uex − uh‖L2 =
√
hxhy(uex − uh)T (uex − uh),

where hx and hy are the mesh size in the x and y spatial direction, respectively.

5.1 An Extreme Interface

We consider the wave equation on the domain [− 1, 1] × [0, 1], separated by the interface
x = 4 sin(7πy)/5. The domain and mesh are depicted in Fig. 2a, b, respectively. The aim
of this experiment is to verify that the scheme is stable even when an interface with a large
curvature is present in the domain, but not to test accuracy or convergence rate. As can be
seen in Fig. 2b, the mesh is of bad quality due to large distortion.

The wave equation is discretized by the sixth order SBP operators in each subdomain, and
patched together by the SAT method using the sixth order interpolation operators [22]. The
semi-discretization can be written as a system of ordinary differential equations

wt t = Dw + F,

wherew is the numerical solution, D is the spatial discretization operator including boundary
and interface terms, and F corresponds to the forcing function and boundary data evaluated
on the grid.

First, we use 21 × 21 grid points in the left domain and 41 × 41 grid points in the right
domain, and perform an eigenvalue analysis. Stability requires that all the eigenvalues of D
are real and non-positive. In Fig. 3a, we plot the eigenvalues of D multiplied by the square
of the mesh size in the right domain, denoted by λ, and observe that they are indeed real and
non-positive.

Next, we test the scheme with a much finer mesh, 101×101 grid points in the left domain
and 201× 201 grid points in the right domain. Instead of an eigenvalue analysis, we perform
a long time simulation by using the manufactured solution

U = cos(x + 1) cos(y + 2) cos(
√
2t + 3),

123



J Sci Comput (2018) 77:775–792 787

-10 -8 -6 -4 -2 0

real( ) 104

-1

-0.5

0

0.5

1
im

ag
(

)

(a)

0 2 4 6 8 10
temporal period

0

0.002

0.004

0.006

0.008

0.01

L 2 e
rr

or

(b)

Fig. 3 a Eigenvalues of the spatial discretization operator, b L2 error in ten temporal periods

for initial and Neumann boundary data. We choose the classical Runge-Kutta method as the
time integrator, and let the wave propagate for ten temporal periods. The L2 error at each
time step is plotted in Fig. 3b. We observe that the L2 error is bounded in time.

5.2 A T-Junction Interface

We consider the same domain [− 1, 1] × [0, 1] as in the previous experiment, but with
interfaces depicted in Fig. 1b. The interface in the vertical direction is defined by x =
sin(3πy/2)/3. The intersection point (x̄, ȳ) of the two interfaces is chosen by letting ȳ =
0.621. The interface in the horizontal direction is defined by y = sin(πx/2)/5 + ȳ −
sin(π sin(3π ȳ/2)/6)/5. The numbers of grid points in the left, lower right and upper right
domain are 26 × 52, 26 × 26 and 51 × 26, respectively. Both the blocks and interfaces are
non-conforming, see a close-up in Fig. 4a.When refining the mesh, the number of grid points
is doubled in each spatial direction in each domain.

To test accuracy and rate of convergence, we use the manufactured solution

U = cos(3πx + 1) cos(4πy + 2) cos(5π t + 3). (18)

to obtain initial and Neumann boundary data, and propagate the wave until t = 2. With this
analytical solution, there is no forcing term in the equation.

We solve the equation by the fourth and sixth order SBP-SAT finite difference method,
and use the classical Runge-Kutta method to integrate in time. Since the interface in this
experiment is a T-junction, we use the fourth and sixth order accurate interpolation operators
constructed in [16]. The time step is chosen small enough so that the error in the solution is
determined by the spatial discretization. The errors in L2 norm are shown in Fig. 4b, and the
associated rates of convergence are given at the end of each error plot. In the figure, we use
new SAT as the legend to denote the results obtained by the scheme in this paper, and old
SAT to denote the result obtained by the scheme in [37]. The x-axis label N is the number
of grid points in the x-direction in the left domain.

We observe that the fourth and sixth order accurate scheme lead to third and fourth order
convergence rate, respectively. This agrees well with the accuracy discussion in the end of
Sect. 4.1 in this paper. We note that the sixth order method gives much smaller error than
the fourth order methods. In addition, the fourth order method developed in this paper gives
a smaller error than the fourth order method in [37]. We have also performed an experiment
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Fig. 4 a A close-up of the interfaces. b Rate of convergence

with the sixth order method in [37] and the numerical solution quickly blows up, indicating
that method is unstable. This is not surprising because the energy analysis in [37] requires
the norm-compatible condition of the interface operators, which is not satisfied by the sixth
order operators.

6 Conclusion

We use the SBP-SAT finite difference method to solve the wave equation on a composite
domain. The domain is divided by curved interfaces resulting in non-conforming blocks,
and the grid is constructed in each block independently resulting in non-conforming grid
interfaces. We develop new penalty terms to patch the blocks together by the SAT method.
This extends the provably stable scheme from fourth order accuracy [37] to sixth order
accuracy. Numerical experiments demonstrate the superiority of the new sixth order accurate
scheme. In addition, we find that the new fourth order accurate scheme is more accurate than
the fourth order accurate scheme in [37].

We note that eighth order and tenth order interpolation operators are constructed in [16],
and can potentially be incorporated into the developed scheme in this paper. However, higher
than sixth order accurate SBP operators for second derivative with variable coefficient have
not yet been reported.
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Appendix

Stability is proved by the energy method, starting with multiplying the two semi-discretized
equations in (14) from the left by uTt Hu and vTt Hv , respectively, where Hu := Hux ⊗ Huy

and Hv := Hvx ⊗Hvy . In the following derivation, we focus on the energy contribution from
the first equation in (14) as the energy contribution from the second equation in (14) can be
computed in a similar way.

First, we consider the energy contribution from the penalty term SATu :

uTt Hu SATu

= 1

2
uTt (�aEux Sux + �bEux D1uy)

T Huy(Euxu − (Euv ⊗ Iv2u)v)

− τ

2
uTt Huy((Eux ⊗ (Iv2u Iu2v))u − (Euv ⊗ Iv2u)v)

− τ

2
uTt Huy(Euxu − (Euv ⊗ Iv2u)v)

− 1

2
uTt Huy((�aEux Sux + �bEux D1uy)u − (Euv ⊗ Iv2u)(�αEvx Svx + �β Evx D1v y)v).

(19)

In the final energy estimate, we expect to see that the discrete energy is conserved in time.
We note that the first part of the third term in (19) can be written as the time derivative of a
quadratic term

− τ

2
uTt HuyEuxu = − τ

4

d

dt
((Euxu)T HuyEuxu).

With a positive τ , the above term contributes positively to the discrete energy in terms of
Euxu. By using the norm-compatible property of the interpolation operators, we find that the
first part of the second term in (19) can also be written as the time derivative of a quadratic
term

− τ

2
uTt Huy(Eux ⊗ (Iv2u Iu2v))u = − τ

4

d

dt
(((Eux ⊗ Iu2v)u)T Hv y(Eux ⊗ Iu2v)u),

which contributes to the energy positively in terms of (Eux ⊗ Iu2v)u. We observe that in
(19), there are also terms Eux Suxu and Eux D1uyu. Therefore, we need the corresponding
positive energy contributions, which come from the SBP operators as shown below.

The energy contribution from the two mixed-derivative terms is

uTt HuD1ux�bD1uyu + uTt HuD1uy�bD1uxu (20)

= −uTt DT
1uxHu�bD1uyu − uTt DT

1uyHu�bD1uxu + uTt EuxHuy�bD1uyu.

Note that we have used the equality (1) for D1ux and D1uy, and have excluded boundary
terms that do not correspond to the interface. On the right-hand side of (20), the first two
terms are volume terms, involving the numerical solution u in the entire domain�u ; the third
term is an interface term, involving u on the interface.

The energy contribution from the SBP approximation is

uTt Hu(D
(a)
2ux + D(c)

2uy)u

= −uTt D
T
1ux Hu�aD1uxu − uTt HuyR

(a)
ux u + uTt Huy�aEux Suxu

− uTt DT
1uyHu�cD1uyu − uTt HuxR

(c)
uy u, (21)
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where the two remainder terms are R(a)
ux = ∑nuy

i=1 R
(ai )
ux ⊗ Ei

uy and R(c)
uy = ∑nux

i=1 R
(ci )
uy ⊗ Ei

ux .
On the right-hand side of (21), the third is an interface term, while the others are volume
terms. For the volume terms in (20) and (21), we have

− uTt DT
1uxHu�bD1uyu − uTt DT

1uyHu�bD1uxu − uTt DT
1uxHu�aD1uxu

− uTt DT
1uyHu�cD1uyu − uTt HuyR

(a)
ux u − uTt Hux R

(c)
uy u

= −
[
D1uxut
D1uyut

]T [
Hu

Hu

] [
�a �b

�b �c

] [
D1uxu
D1uyu

]
− uTt HuyR

(a)
ux u − uTt HuxR

(c)
uy u.

Next, we split

[
�a �b

�b �c

]
into two parts, and obtain

− uTt DT
1uxHu�bD1uyu − uTt DT

1uyHu�bD1uxu − uTt DT
1uxHu�aD1uxu

− uTt DT
1uyHu�cD1uyu − uTt HuyR

(a)
ux u − uTt HuxR

(c)
uy u

= −
[
D1uxut
D1uyut

]T [
Hu

Hu

]([
�a �b

�b �c

]
− δ I

) [
D1uxu
D1uyu

]

− δ

[
D1uxut
D1uyut

]T [
Hu

Hu

] [
D1uxu
D1uyu

]
− uTt HuyR

(a)
ux u − uTt HuxR

(c)
uy u, (22)

where I is an identity operator, and δ is defined in (17). The first term in (22) is the time
derivative of a non-positive quantity. From the second term in (22), we need to get quadratic
terms for both Eux D1uxu and Eux Suxu on the interface. We write

− δ

[
D1uxut
D1uyut

]T [
Hu

Hu

] [
D1uxu
D1uyu

]
− uTt HuyR

(a)
ux u − uTt HuxR

(c)
uy u

= −δ(D1uxut )
T Hu(D1uxu) − uTt HuyR

(a)
ux u

− δ(D1uyut )
T Hu(D1uyu) − uTt HuxR

(c)
uy u

= −uTt ((δDT
1ux Hux D1ux + R(δ)

ux ) ⊗ Huy)u − uTt HuyR
(a−δ)
ux u

− δ(Eux D1uyut )
T Hu(Eux D1uyu) − uTt HuxR

(c)
uy u

− δ((Iux − Eux)D1uyut )
T Hu(Iux − Eux)D1uyu

= −uTt (M (δ) ⊗ Huy)u − uTt HuyR
(a−δ)
ux u

− δ(Eux D1uyut )
T Hu(Eux D1uyu) − uTt HuxR

(c)
uy u (23)

− δ((Iux − Eux)D1uyut )
T Hu(Iux − Eux)D1uyu

= −uTt (M̃ (δ) ⊗ Huy)u − huxσδ(Eux Suxut )T HuyEux Suxu − uTt HuyR
(a−δ)
ux u

− δ(Eux D1uyut )
T Huy(Eux D1uyu) − uTt HuxR

(c)
uy u

− δ((Iux − Eux)D1uyut )
T Hu(Iux − Eux)D1uyu. (24)

Note that in the above derivation, we use Lemma 3 to obtain (23), and Lemma 2 to obtain (24).
We have obtained both the time derivative of quadratic terms for Eux Suxu and Eux D1uxu.

After a very similar derivation of energy contribution for the second equation in (14), we
move all terms to one side and write it in the form d

dt G = 0. The final step of the energy

123



J Sci Comput (2018) 77:775–792 791

analysis is to determine the penalty parameter τ so that G is a discrete energy satisfying
G ≥ 0. With some algebraic calculations, we may write the energy contribution from all
interface terms as xTI AxI , where xI is the vector in the form

xI =
[
Euxu; Eux Suxu; Eux D1uxu; (Euv ⊗ Iv2u)v
Evxv; Evx Svxv; Evx D1vxv; (Evu ⊗ Iu2v)u

]
.

The matrix A is a block matrix in the form A =
[
A1, 0,
0, A2

]
, where

A1 = −

⎡
⎢⎢⎣

− τ
4 Huy,

1
4 Huy�a,

1
4 Huy�b,

τ
4 Huy

1
4 Huy�a, − huxσδ

2 Huy, 0, − 1
4 Huy�a

1
4 Huy�b, 0, − δ

2 Huy, − 1
4 Huy�b

τ
4 Huy, − 1

4 Huy�a, − 1
4 Huy�b, − τ

4 Huy

⎤
⎥⎥⎦ ,

A2 = −

⎡
⎢⎢⎣

− τ
4 Hv y, − 1

4 Hv y�α, − 1
4 Hv y�β, τ

4 Hv y

− 1
4 Hv y�α, − hvxσδ

2 Hv y, 0, 1
4 Hv y�α

− 1
4 Hv y�β, 0, − δ

2 Hv y,
1
4 Hv y�β

τ
4 Hv y,

1
4 Hv y�α, 1

4 Hv y�β, − τ
4 Hv y

⎤
⎥⎥⎦ .

We note that A1 is symmetric, and each submatrix of A1 is a diagonal matrix of dimension
nuy . Therefore, we can write A1 as a sum of nuy matrices, where the i th matrix takes the i th

diagonal element of each submatrix with all the other elements zero. We then compute the
eigenvalues of each matrix, and require them to be non-negative. By considering A2 in the
same way, we obtain the limit on the penalty parameter for which A is positive semi-definite

τ ≥ max

(
a2max + b2maxhuxσ

2huxσδ
,
α2
max + β2

maxhvxσ

2hvxσδ

)
,

where amax, bmax, αmax and βmax are the maximum of functions a(x, y), b(x, y), α(x, y) and
β(x, y) evaluated on the interface, respectively.
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