28 research outputs found
A Comprehensive Energy Model for an Optimal Design of a Hybrid Refrigerated Van
The path towards decarbonization requires a progressive adaptation of all refrigeration systems, but only stationary ones have been intensely studied to improve their environmental performance. However, refrigerated transport is vital in the cold chain and must be considered in the green transition. In this paper, we propose a model for a hybrid refrigerated van that includes photovoltaic panels and electric batteries to decrease total greenhouse gas emissions from the engine. Thermal, electrical, and battery sub-models are considered and integrated into the comprehensive hybrid solar-powered refrigerated van model. Different technologies are compared, including lithium and lead-acid batteries and three different types of photovoltaic panels. The model was validated regarding van fuel consumption, showing a 4% deviation. Single and multiple delivery scenarios are considered to assess the energy, economic, and environmental benefits. Monthly CO2,e emissions could be reduced by 20% compared to a standard refrigerated van. Despite the environmental benefits provided by this sustainable solution, the payback period is still too long (above 20 years) because of the necessary investment to adapt the vehicle and considering fuel and electricity prices currently
Central Exclusive Production in QCD
We investigate the theoretical description of the central exclusive
production process, h1+h2 -> h1+X+h2. Taking Higgs production as an example, we
sum logarithmically enhanced corrections appearing in the perturbation series
to all orders in the strong coupling. Our results agree with those originally
presented by Khoze, Martin and Ryskin except that the scale appearing in the
Sudakov factor, mu=0.62 \sqrt{\hat{s}}, should be replaced with
mu=\sqrt{\hat{s}}, where \sqrt{\hat{s}} is the invariant mass of the centrally
produced system. We confirm this result using a fixed-order calculation and
show that the replacement leads to approximately a factor 2 suppression in the
cross-section for central system masses in the range 100-500 GeV.Comment: 41 pages, 19 figures; minor typos fixed; version published in JHE
The infrared structure of gauge theory amplitudes in the high-energy limit
We develop an approach to the high-energy limit of gauge theories based on the universal properties of their infrared singularities. Our main tool is the dipole formula, a compact ansatz for the all-order infrared singularity structure of scattering amplitudes of massless partons. By taking the high-energy limit, we show that the dipole formula implies Reggeization of infrared-singular contributions to the amplitude, at leading logarithmic accuracy, for the exchange of arbitrary color representations in the cross channel. We observe that the real part of the amplitude Reggeizes also at next-to-leading logarithmic order, and we compute the singular part of the two-loop Regge trajectory, which is universally expressed in terms of the cusp anomalous dimension. Our approach provides tools to study the high-energy limit beyond the boundaries of Regge factorization: thus we show that Reggeization generically breaks down at next-to-next-to-leading logarithmic accuracy, and provide a general expression for the leading Reggeization-breaking operator. Our approach applies to multiparticle amplitudes in multi-Regge kinematics, and it also implies new constraints on possible corrections to the dipole formula, based on the Regge limit
Factorization Properties of Soft Graviton Amplitudes
We apply recently developed path integral resummation methods to perturbative
quantum gravity. In particular, we provide supporting evidence that eikonal
graviton amplitudes factorize into hard and soft parts, and confirm a recent
hypothesis that soft gravitons are modelled by vacuum expectation values of
products of certain Wilson line operators, which differ for massless and
massive particles. We also investigate terms which break this factorization,
and find that they are subleading with respect to the eikonal amplitude. The
results may help in understanding the connections between gravity and gauge
theories in more detail, as well as in studying gravitational radiation beyond
the eikonal approximation.Comment: 35 pages, 5 figure
All-mass n-gon integrals in n dimensions
We explore the correspondence between one-loop Feynman integrals and
(hyperbolic) simplicial geometry to describe the "all-mass" case: integrals
with generic external and internal masses. Specifically, we focus on
-particle integrals in exactly space-time dimensions, as these integrals
have particularly nice geometric properties and respect a dual conformal
symmetry. In four dimensions, we leverage this geometric connection to give a
concise dilogarithmic expression for the all-mass box in terms of the
Murakami-Yano formula. In five dimensions, we use a generalized Gauss-Bonnet
theorem to derive a similar dilogarithmic expression for the all-mass pentagon.
We also use the Schl\"afli formula to write down the symbol of these integrals
for all . Finally, we discuss how the geometry behind these formulas depends
on space-time signature, and we gather together many results related to these
integrals from the mathematics and physics literature.Comment: 49 pages, 8 figure
Genomic organisation of the Mal d 1 gene cluster on linkage group 16 in apple
European populations exhibit progressive sensitisation to food allergens, and apples are one of the foods for which sensitisation is observed most frequently. Apple cultivars vary greatly in their allergenic characteristics, and a better understanding of the genetic basis of low allergenicity may therefore allow allergic individuals to increase their fruit intake. Mal d 1 is considered to be a major apple allergen, and this protein is encoded by the most complex allergen gene family. Not all Mal d 1 members are likely to be involved in allergenicity. Therefore, additional knowledge about the existence and characteristics of the different Mal d 1 genes is required. In the present study, we investigated the genomic organisation of the Mal d 1 gene cluster in linkage group 16 of apple through the sequencing of two bacterial artificial chromosome clones. The results provided new information on the composition of this family with respect to the number and orientation of functional and pseudogenes and their physical distances. The results were compared with the apple and peach genome sequences that have recently been made available. A broad analysis of the whole apple genome revealed the presence of new genes in this family, and a complete list of the observed Mal d 1 genes is supplied. Thus, this study provides an important contribution towards a better understanding of the genetics of the Mal d 1 family and establishes the basis for further research on allelic diversity among cultivars in relation to variation in allergenicity
The Non-Abelian Exponentiation theorem for multiple Wilson lines
We study the structure of soft gluon corrections to multi-leg scattering
amplitudes in a non-Abelian gauge theory by analysing the corresponding product
of semi-infinite Wilson lines. We prove that diagrams exponentiate such that
the colour factors in the exponent are fully connected. This completes the
generalisation of the non-Abelian exponentiation theorem, previously proven in
the case of a Wilson loop, to the case of multiple Wilson lines in arbitrary
representations of the colour group. Our proof is based on the replica trick in
conjunction with a new formalism where multiple emissions from a Wilson line
are described by effective vertices, each having a connected colour factor. The
exponent consists of connected graphs made out of these vertices. We show that
this readily provides a general colour basis for webs. We further discuss the
kinematic combinations that accompany each connected colour factor, and
explicitly catalogue all three-loop examples, as necessary for a direct
computation of the soft anomalous dimension at this order.Comment: v2 - typos corrected, references added, to appear in JHEP; 57 pages,
21 figures. v3 - correction in Table 2 and Appendix A.2.5; updates
references; 57 pages, 21 figure
FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2
In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics