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Abstract: We explore the correspondence between one-loop Feynman integrals and (hy-

perbolic) simplicial geometry to describe the all-mass case: integrals with generic external

and internal masses. Specifically, we focus on n-particle integrals in exactly n space-time

dimensions, as these integrals have particularly nice geometric properties and respect a

dual conformal symmetry. In four dimensions, we leverage this geometric connection to

give a concise dilogarithmic expression for the all-mass box in terms of the Murakami-Yano

formula. In five dimensions, we use a generalized Gauss-Bonnet theorem to derive a sim-

ilar dilogarithmic expression for the all-mass pentagon. We also use the Schläfli formula

to write down the symbol of these integrals for all n. Finally, we discuss how the geome-

try behind these formulas depends on space-time signature, and we gather together many

results related to these integrals from the mathematics and physics literature.
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1 Introduction and overview

Among the broad class of special functions that emerge in our description of scattering

amplitudes in perturbative quantum field theory, polylogarithms play a special role. Not

only are these functions under the best theoretical control, they also prove sufficient to

describe one-loop scattering processes (in any theory, for any number of dimensions). This
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ubiquity follows from integral reduction combined with the fact that any one-loop Feynman

integral (in any integer number of dimensions) are believed to be expressible in terms

of generalized polylogarithms. Although more complicated transcendental functions are

known to appear in generic scattering processes at higher loop orders, polylogarithms

also prove sufficient to describe many low-multiplicity processes beyond one loop (and

sometimes, perhaps, to all loop orders).

In this paper, we study the class of polylogarithms that appear as one-loop Feynman

integrals in generic quantum field theories. In particular, we are interested in the most

general (or universal) form of these integrals, corresponding to the case in which all ex-

ternal and internal masses are taken to be generic. We call these all-mass integrals. We

focus here on n-particle integrals in exactly n space-time dimensions, which prove to have

particularly nice geometric properties and respect a dual conformal symmetry. In a com-

panion paper, [1], we will explore a similar set of ideas for the case of all-mass n-particle

integrals in a generic number of space-time dimensions. Dimensional shift identities [2–4]

can also be used to relate the functions we study here to integrals in other integer di-

mensions. Dimensional shifting identities relate integrals in d and d+2 dimensions; hence,

even- and odd-dimensional integrals fall into two distinct classes. However, a generalized

Gauss-Bonnet theorem relates integrals in even and odd dimensions as well.

These n-gon integrals constitute a physically interesting and instructive class of exam-

ples for developing our understanding quantum field theory. They are sufficiently complex

to exhibit many of the expected features of higher-loop Feynman integrals, yet are already

understood from a diverse set of geometric and computational perspectives. In particular,

these integrals have a geometrical interpretation as volumes of geodesic simplices in hyper-

bolic space (as studied in [5, 6]), making it possible to leverage powerful techniques from

the mathematics literature for their computation.

The study of these integrals has a long history. In particular, the box integral has been

studied in the physics literature by Wu [7], ’t Hooft and Veltman [8], Denner, Nierste, and

Scharf [9], Davydychev and Delbourgo [5] and Hodges [10]. The pentagon integral in five

dimensions with massless propagators has also been studied by Nandan, Paulos, Spradlin,

and Volovich [11]. Earlier mathematical studies include [12–15], and results for n-gon

Feynman integrals can be found in [16–23]. In particular, previous papers that have made

use of the correspondence between one-loop Feynman integrals and hyperbolic volumes

include [5, 6, 11, 12, 15, 22, 24–28]. Recently, an approach based on Yangian symmetry

has also been discussed [29].

We build on this literature by first presenting new formulas for the all-mass box in

four dimensions, making use of the Murakami-Yano formula for the volume of a hyperbolic

tetrahedron [30], as well as a similar formula for the volume of a tetrahedron in spherical (or

Euclidean) signature [31]. An interesting feature of these formulas is that they depend on

the angles formed at the vertices of these simplices, rather than on the lengths of their edges;

as a result, they take an especially parsimonious dilogarithmic form. Using these formulas,

we write down concise expressions for the all-mass box integral that make its permutation

and conformal symmetries manifest, and which only involve a single algebraic root. We

also derive an expression that is valid in all (four-dimensional) space-time signatures, whose

arguments are more directly related to the external kinematics of the Feynman integral.

– 2 –
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While explicit results for the all-mass box have long existed in the literature [7–10], one-

loop integrals provide an ideal laboratory in which to explore the most natural functions

and variables for expressing (the transcendental part of) higher-loop integrals. As such,

we deem it worthwhile to work towards increasingly compact and elegant expressions for

integrals that promise to be instructive in this regard — a criteria that the all-mass box,

which famously involves algebraic roots, certainly satisfies. In particular, we consider the

formulas presented here to have significant advantages over previous ones presented in the

literature with respect to symmetries, domains of validity, and simplicity.

Building on these results, we also derive an explicit formula for the all-mass pentagon

integral in five dimensions using a generalized Gauss-Bonnet theorem (see [25]). These

results, valid in hyperbolic and spherical signature, again manifest the permutation and

conformal invariance of these integrals, and involve just a five-orbit of algebraic roots.

Using the correspondence with simplicial volumes, the symbol [32] of these integrals

can also be computed for any number of particles using the Schläfli formula [33]. We

give explicit formulas for these symbols that are valid for all n. Notably, this class of

integrals includes members of arbitrarily high transcendental weight, as the weight of these

integrals grows linearly with particle multiplicity. Similar results for one-loop symbols can

be found in [15, 22, 27, 34]. In particular, we find a marked correspondence with the results

of [34, 35], which were derived using different (motivic) methods, and which arise from a

different, more graph-theoretic, perspective on Feynman integrals.

Although in this work we carry out only a cursory investigation of the (all-n) analytic

structure of these integrals, it is our hope that this class of symbols will prove useful for de-

veloping our understanding of the (more general) analytic properties of Feynman integrals,

and especially for developing methods by which symbol alphabets can be (predictively)

tailored to individual Feynman diagrams and amplitudes (see also [36] for some work in

this direction).

The organization of the paper is as follows. We first define the class of integrals

under study and discuss their normalization, which can be chosen to yield unit leading

singularities. These integrals can be expressed in terms of dual variables, and are invariant

under a (dual) conformal symmetry. In section 2, we review various aspects of hyperbolic

geometry, and then show how an exact correspondence can be made between the volumes

of hyperbolic simplices and n-gon Feynman integrals in n dimensions with the choice of

a reference point at infinity [10]. We also discuss how similar correspondences hold with

simplices in different signatures outside of Lorentzian kinematics. In section 3, we work

out examples of this correspondence in low dimensions, studying the bubble integral in

two dimensions and the triangle integral in three dimensions. Then, in section 4, we make

use of known volume formulas for tetrahedra in hyperbolic and spherical signatures (from

Murakami and Yano) to give new formulas for the all-mass box integral. In this section we

also derive a formula that works in all space-time signatures, and study how these formulas

simplify in a dual conformal light-like limit. In section 5, we present a discussion of the

Gauss-Bonnet theorem for manifolds with corners, which can be applied to compute the

volume of n-dimensional simplices in terms of (n−1)-dimensional simplices when n is odd.

Using this method, we obtain explicit formulas for the all-mass pentagon integral in five

– 3 –
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⇔

Figure 1. The n-point, all-mass integral and its dual-momentum space representation.

dimensions in both hyperbolic and spherical signatures. We additionally show how these

results simplify when one or more of the internal masses goes to zero. Finally, in section 6,

we use the Schläfli formula to derive an explicit formula for the symbol of these integrals

for any n, and study certain aspects of their branch cut structure. We end with some

conclusions, and by outlining some open questions.

We also include a short introduction to the embedding formalism in appendix A, as

it is from this perspective that the dual conformal invariance of these integrals is most

readily seen.

1.1 All-mass n-gon Feynman integrals in n dimensions

We are interested in the scalar Feynman integral shown in figure 1, where the loop mo-

mentum ` is n-dimensional, and all the external momenta and internal masses are taken to

be generic: p2i 6= 0, mi 6= 0. We may define this integral in (all-plus) Euclidean-signature

to be1

I0n :=

∫
dn`

1[
`2 +m2

1

][
(`− p1)2 +m2

2

]
· · ·
[
(`− (p1 + · · ·+ pn−1))2 +m2

n

] . (1.1)

(We will have more to say about other space-time signatures in section 2.3.) Notice that

we have decorated I0n with a superscript ‘0’ to emphasize that we will soon have reason to

change its normalization.

In order to manifest momentum conservation and the invariance of (1.1) under trans-

lations of the loop momentum `, we introduce dual-momentum coordinates {xi} such

that pi=:(xi+1 − xi), with cyclic indexing understood (these variables have been used

in [37, 38]). In terms of these coordinates, it is easy to see that consecutive sums of

external momenta appearing in the propagators of (1.1) become squared differences:

I0n =

∫
dn`

1[
(`− (x1 − x1))2 +m2

1

][
(`− (x2 − x1))2 +m2

2

]
· · ·
[
(`− (xn − x1)2 +m2

n

]
=:

∫
dnx`

1[
(x` − x1)2 +m2

1

][
(x` − x2)2 +m2

2

]
· · ·
[
(x` − xn)2 +m2

n

]
=:

∫
dnx`

1(
x2` 1 +m2

1

)(
x2` 2 +m2

2

)
· · ·
(
x2` n +m2

n

) , (1.2)

1In momentum space, the loop integration measure should also include a factor of 1/(2π)n. We leave

this off because it would be scaled out anyway soon — as explained in the next footnote.

– 4 –
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where in the second step we defined the dual loop-momentum variable x` according to

`=:x` − x1 and in the last step we introduced the familiar notation for dual-momentum

Mandelstam invariants, x2ij := (xj − xi)2.
Introducing Feynman parameters in the canonical way (and doing the standard trans-

lations and rescalings), it is not hard to express (1.2) as

I0n = Γ(n)

∫ ∞
0

[
dn−1~α

] ∫
dnx`

1[
x2` + F

]n = πn/2Γ(n/2)

∫ ∞
0

[
dn−1~α

] 1

F
n
2
, (1.3)

where F is the second Symanzik polynomial

F :=

[∑
i

α2
im

2
i

]
+
∑
i<j

αiαj
(
x2ij +m2

i +m2
j

)
(1.4)

and we have used
[
dn−1~α

]
to denote the canonical volume form on the projective space

RPn−1 of Feynman parameters

[
dn−1~α

]
:=

n∑
i=1

(−1)iαi dα1 ∧ · · · ∧ d̂αi ∧ · · · ∧ dαn . (1.5)

This volume form is frequently written with an explicit choice of de-projectivization[
dn−1~α

]
' dn~α δ(αi − 1) (1.6)

for any choice of αi. Notice that Feynman’s preferred choice of de-projectivization,

δ
(∑

i αi − 1
)
, is related to that of (1.6) by a change of variables with unit Jacobian.

It will be useful to re-express the second Symanzik polynomial (1.4) in a somewhat

more compact way. In particular, as also done in [5, 9], we introduce an n × n matrix G0

with components

G0ij :=
1

2

(
x2ij +m2

i +m2
j

)
(1.7)

so that

F =
∑
i,j

G0ijαiαj . (1.8)

The factor of 1
2 in (1.7) is a symmetry factor, allowing us to write (1.8) more obviously as

matrix multiplication: F = ~αT.G.~α where ~α :=(α1, . . . , αn).

Leading singularities and purity. I0n as defined in (1.2) is an n-dimensional integral

with n loop-dependent factors in its denominator. Importantly, it has leading singularities :

residues of maximal co-dimension. It is canonical to normalize such integrals so that (at

least some choice of) leading singularities are unit in magnitude. An integral with the

property that all its leading singularities are unit in magnitude is pure in the sense of [39].

The integral I0n is known to be pure up to a constant of normalization — fixed by any one

of its leading singularities.

The calculation of the maximal co-dimension residues of I0n is not entirely trivial (al-

though it is significantly easier in the embedding space formalism discussed in appendix A);

– 5 –
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therefore, we merely quote the fact that there are always two leading singularities which

cut all n propagators, and that these leading singularities are

Res
{x2` i+m2

i=0}

(
dnx`(

x2` 1 +m2
1

)(
x2` 2 +m2

2

)
· · ·
(
x2` n +m2

n

)) =
±1

2n
√

detG0
. (1.9)

Because of this,

In := 2n
√

detG0I0n (1.10)

will have ‘unit leading singularities’ and is in fact pure.

Notice that, although the integral I0n is positive definite (on the principal branch) for

real kinematics, In may not be: for example, when det G0 < 0, our definition of In will be

pure imaginary. This is a convention; we could have chosen instead to use
√
| detG0| in

the normalization of (1.10), but the choice we have made is the more standard one (and

the one we find will allow for slightly simpler formulas below). As we will see, however, it

will be useful to sometimes make use of

σ(G0) := sign(detG0) . (1.11)

With this normalization,2 the Feynman integral (1.3) becomes

In = (2
√
π)nΓ(n/2)

∫ ∞
0

[
dn−1~α

] √
detG0(∑

ij G0ijαiαj
)n

2

, (1.12)

where we have adopted the notation in (1.8).

In addition to being pure, the integral In is conjectured to have transcendental weight

n [27, 34]. Isolating the kinematic-dependent integral as În via

În :=
1

(2
√
π)nΓ(n/2)

In , (1.13)

we cleanly separate this weight into two parts: the prefactor we have divided out has

transcendental weight dn/2e, while the integral În has weight bn/2c.

Something a little odd about the ‘scalar’ integral In. The original integral I0n (1.1)

was built from ordinary scalar Feynman propagators. Its overall sign (or phase) is intrinsi-

cally well defined, including its dependence on space-time signature. In contrast, the pure

integral In defined by (1.10) has a conventional overall sign. Even fixing branch conven-

tions for
√

detG, multidimensional residues are intrinsically oriented quantities whose signs

depend on the orientation of the contour integral (or the ordering of integration variables

in the Jacobian) that defines them.

Because the left hand side of (1.9) should be viewed as oriented — antisymmetric

in the ordering of the propagators, say — we might choose to view the normalization

of In in (1.10) as also carrying this orientation, thereby rendering In anti-cyclic in even-

dimensional spaces. This corresponds to interpreting (1.12) as an oriented integral. We

do not take this view here, mostly for practical (and for notational) reasons. However, we

emphasize that the sign of the normalized integral In corresponds to a choice of convention.

2Notice that the factor of 1/(2π)n ‘missing’ from (1.1) would have also appeared in (1.9) then dropped

out of the definition of In in (1.10).

– 6 –
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Scale invariance and conformality. The integral In would seem to depend on
(
n
2

)
Mandelstam invariants x2ij and n internal masses. However, this integral has a hidden

conformal symmetry. To see this, we first re-write (1.12) to remove the dimensionful

parameters in the matrix G0. One way to do this is to rescale the Feynman parameters

according to3

αi 7→ αi/mi . (1.14)

This introduces a Jacobian of 1/(
∏
imi), resulting in

In 7−→
(1.14)

(2
√
π)nΓ(n/2)

∫ ∞
0

[
dn−1~α

]∏
imi

√
detG0(∑

ij

(
G0ij/(mimj)

)
αiαj

)n
2

= (2
√
π)nΓ(n/2)

∫ ∞
0

[
dn−1~α

] √
detG(∑

ij Gijαiαj
)n

2

, (1.15)

where we have introduced a new matrix G that has entries

Gij := G0ij/(mimj) =
x2ij +m2

i +m2
j

2mimj
. (1.16)

Note that G is symmetric and has 1 in its diagonal entries, so it depends on just n(n−1)/2

independent pieces of kinematic data. We can think of In(G) as being a function directly

of this matrix G.

Not only is it clear now that In(G) is scale-invariant (under a simultaneous transforma-

tion of all (xµa ,ma) 7→ (λxµa , λma)), but it turns out to also be fully conformally invariant.

This fact is hinted at by the structural equivalence between (1.12) and (1.15), and can be

made concrete by noting the invariance of In under the inversion

xµi →
xµi

x2i +m2
i

, mi →
mi

x2i +m2
i

, xµ` →
xµ`
x2`

. (1.17)

This conformal invariance can be better understood from the viewpoint of the embedding

formalism, which we discuss in more detail in appendix A.

2 Hyperbolic geometry and kinematic domains

Let us now turn to the computation of volumes in hyperbolic space. We start by considering

the space En−1,1, which we take to be n-dimensional Euclidean space equipped with the

Lorentzian scalar product

〈x, y〉 := x1y1 + · · ·+ xn−1yn−1 − xnyn (2.1)

for any vectors x, y ∈ En−1,1. In this space we distinguish three types of vectors: those that

are ‘time-like’ (〈x, x〉 < 0); those that are ‘light-like’ (〈x, x〉 = 0); and those that are space-

like (〈x, x〉 > 0). In the case of time-like and light-like vectors, we further differentiate

vectors whose last component is positive or negative.

3The reader should forgive our abuse of notation in using αi to denote the integration variable both

before and after the rescaling (1.14).

– 7 –
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The collection of time-like vectors that satisfy 〈x, x〉 = −1 and xn > 0 define one

branch of a hyperboloid (which we will refer to as its positive branch). This space of

vectors furnishes one realization of hyperbolic space Hn−1 and constitutes the hyperboloid

model. Making the change of variables xn = cosh τ and xi = zi sinh τ for i = 1, . . . , n− 1,

this hyperboloid constraint becomes the requirement that the zi lie on the unit sphere:

z21 + · · ·+ z2n−1 = 1. It follows that the inner product (2.1) induces the metric

ds2= dτ2 + sinh2τ dΩ2
n−2 , (2.2)

where dΩ2
n−2 is the measure on the (n−2)-dimensional unit sphere. Hence, the induced

metric from the embedding space is a Riemannian metric.

Starting from any two points x, y on the positive branch of this hyperboloid,

we can rotate our coordinate system on En−1,1 so that we have x = (0, . . . , 0, 1)

and y = (0, . . . , 0, sinh τ, cosh τ). The geodesic curve through x and y is given by

(0, . . . , 0, sinh t, cosh t) for 0 ≤ t ≤ τ , and the line element along this geodesic is ds2 = dτ2.

Since 〈x, y〉 = − cosh τ , the hyperbolic distance d(x, y) between x and y along the geodesic

that joins them is

d(x, y) := τ = arccosh
(
− 〈x, y〉

)
. (2.3)

Similarly, it is easy to see that the volume form dx1 · · · dxn in En−1,1 induces the form

dvol := δ
(
〈x, x〉+ 1

)
θ(xn)dx1 · · · dxn =

δ
(
xn −

√
1 + x21 + · · ·+ x2n−1

)
2
√

1 + x21 + · · ·+ x2n−1
θ(xn)dx1 · · · dxn

(2.4)

on the upper branch of the hyperboloid.

There are several other ways to represent hyperbolic space. Another representation

that will prove useful for us is the projective model (sometimes called the Klein model).

This model realizes hyperbolic space as the set of lines that intersect both the origin and the

upper branch of the hyperboloid considered above, as show in figure 2. Some of these lines

are tangent to the upper branch of the hyperboloid; these lines correspond to the boundary

of hyperbolic space. While geodesic lines and hypersurfaces correspond to straight lines

and planes in the projective model, it breaks the conformal symmetry insofar as rotations

of the original embedding space En−1,1 do not preserve angles.

For every point x =
(
x1, . . . , xn−1,

√
1+ x21 + · · ·+ x2n−1

)
in the upper branch of

the hyperboloid, the corresponding point in the projective model is given by p =

(p1, . . . , pn−1, 1), where pi := xi/
√

1 + x21 + · · ·+ x2n−1; equivalently, we could view xi :=

pi/
√

1− p21 − · · · − p2n−1. This maps the upper branch of the hyperboloid to the interior

of the unit ball in the plane xn = 1, centered at (0, . . . , 0, 1) ∈ En−1,1. We denote the inner

product of two points p and q in the projective model by

Q(p, q) = 1−
n−1∑
i=1

piqi . (2.5)

Note that the metric Q(p, q) differs from the metric of the ambient space by a non-constant

rescaling pi 7→ pi/
√
Q(pi, pi), which maps the points at infinity to the boundary of the unit

– 8 –
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xn

x =n

x1,...,n−1

Figure 2. The hyperboloid and projective models of hyperbolic space, as they appear embedded

in En−1,1. In the hyperboloid model, points in hyperbolic space belong to the upper branch of the

hyperboloid, while in the projective model they belong to the xn = 1 hyperplane. The points in

these two models are in one-to-one correspondence, and are identified when they lie on the same

line passing through the origin of the embedding space.

l12 l13

l14

l23

l24 l34

1

2

3

4

Figure 3. A three-dimensional simplex (a tetrahedron) in hyperbolic space H3.

ball defined by Q(p, p) = 0. In these coordinates, (2.4) becomes

dvol =
1

2

dp1 · · · dpn−1
Q(p, p)

n
2

, (2.6)

where now p2i ≤ 1.

Now consider an (n−1)-simplex with vertices v1, . . . , vn ∈ En−1,1 such that the last

component of each vi is equal to unity.4 The interior points of this simplex can be

parametrized by

p(β) =
n∑
i=1

βivi, (2.7)

where βi > 0 and
∑n

i=1 βi = 1. Using the βi variables, the numerator of (2.6) can be

rewritten as

dp1(β) · · · dpn−1(β) = det
i,j

(vi − vn)j dβ1 · · · dβn−1 (2.8)

= |v1 ∧ · · · ∧ vn| dβ1 · · · dβn−1 . (2.9)

4Thus far, we have used indices on x and y (in the hyperboloid model) and p and q (in the projective

model) to denote components. We now switch to a notation where indices on v (in the projective model)

and h (in the hyperboloid model, in the next section) denote distinct points.
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Furthermore, we have

| det
(
Qij
)
| = |v1 ∧ · · · ∧ vn|2 := det

(
v1, . . . , vn

)2
, (2.10)

where we have defined Qij as the matrix with entries Qi,j := Q(vi, vj). Putting these

results together, (2.6) can be rewritten as

dvol (Q(vi, vj)) =
1

2

√
| det(Qi,j)| dβ1 · · · dβn−1(∑

i,j Qijβiβj

)n
2

. (2.11)

Finally, we make a change of variable βi 7→ αi/(
∑

i αi) to obtain

dvol (Q(vi, vj)) =
1

2

[
dn−1~α

] √
|det(Qi,j)|(∑
i,j Qijαiαj

)n
2

, (2.12)

where 0 < αi < ∞ and (since αn 6= 1) we have lifted the differential form in (2.11) to the

full projective measure (1.5).

Let us now pause to highlight the fact that the volume (2.12) is precisely the one-loop

n-point Feynman integral given in (1.15), up to some numerical prefactor and the fact

that the latter integral has been de-projectivized by the choice αn = 1. The points of the

simplex whose volume we are calculating are encoded by kinematics via the matrix G.

Before exploring the connections between kinematics and the geometry of hyperbolic

simplices, we note that the cases of even and odd n are qualitatively different. When n

is even the volume form is holomorphic away from the locus Q(p, p) = 0, while for odd n

it contains a square root. However, despite the apparent complication of this square root,

these odd-n integrals can be computed using the Gauss-Bonnet theorem for manifolds with

corners. For instance, in the n = 3 case, the edges of the triangle do not contribute since

their geodesic curvature vanishes; correspondingly, only the vertices contribute. We will

say more about this in section 5.

2.1 Feynman integrals as hyperbolic volumes

Recall that in the projective model we have a projective space inhabited by points vi ∈
En−1,1 whose last components all equal unity, and a quadric defined by Q(vi, vi) = 0 whose

points correspond to the boundary of hyperbolic space. This boundary can be thought of

as a copy of the dual space over which we integrate when computing the Feynman integrals.

To describe this construction explicitly, consider an arbitrary point I at infinity, namely a

point satisfying Q(I, I) = 0. All points vi on the boundary and such that Q(I, vi) = 0 are

points which lie on the light-cone at infinity with vertex at I. To each point vi not on the

boundary, so Q(vi, vi) 6= 0, we can associate another point v̂i on the boundary, via

v̂i := vi + λI , λ = −Q(vi, vi)

2Q(vi, I)
, (2.13)

in which case we have that Q(I, v̂i) = Q(I, vi). Since v̂i is on the boundary, it corresponds

to an n-dimensional dual point. Thus, we can think of v̂i as a massless projection of vi,

while λ parametrizes the protrusion of vi into the n-th dimension.
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Given two such points vi and vj , we define a set of four-dimensional distances and

masses by

x2ij := − Q(v̂i, v̂j)

Q(v̂i, I)Q(v̂j , I)
, m2

i := − Q(vi, vi)

2Q(vi, I)2
. (2.14)

These quantities are invariant under the separate rescalings of v̂i, v̂j , and vi, while rescaling

I should be thought of as a dilation transformation. It follows that

−Q(vi, vj)√
−Q(vi, vi)

√
−Q(vj , vj)

=
x2ij +m2

i +m2
j

2mimj
= Gij , (2.15)

where we have invoked the notation introduced in (1.16). Plugging this relation into

equation (2.12) and projectively rescaling αi 7→ αi/
√
−Q(vi, vi), we obtain∫

dvol (Gij) =
1

2

∫ [
dn−1~α

] √
| detG|(∑

i,j Gijαiαj
)n

2

(2.16)

=
1

2

√
σ(G)În(G) , (2.17)

where În is the Feynman integral (1.13) and σ(G) was given in (1.11). Thus, with the

definitions (2.14) we have an exact correspondence between volumes of (n−1)-simplices in

hyperbolic space and one-loop n-particle Feynman integrals with arbitrary internal and

external masses.

In order to invert relation (2.17) and express În (with a given set of internal masses

and external momenta) as the volume of a simplex, recall that the hyperbolic distance lij
between two points hi and hj on the hyperboloid 〈hi, hi〉 = 〈hj , hj〉 = −1 was given in (2.3),

namely −〈hi, hj〉 = cosh lij . In terms of the corresponding points in the projective model,

vi and vj , which form the same angle with respect to the origin of the ambient space (see

figure 2), this can be rewritten as (cf. (2.15))

− 〈hi, hj〉 = cosh lij =
−Q(vi, vj)√

−Q(vi, vi)
√
−Q(vj , vj)

= Gij . (2.18)

Here we assume that all the off-diagonal entries of G are greater than or equal to unity,

so that this relation makes sense (we will discuss this point further in section 2.3). To

summarise, the matrix G encodes the distances between all pairs of points forming the

hyperbolic (n− 1)-simplex we are after. G constitutes the (negative of the) Gram matrix5

of the corresponding points hi that define this simplex in the hyperboloid model,

〈hi, hj〉 =
〈vi, vj〉√

−〈vi, vi〉
√
−〈vj , vj〉

=


−1 − cosh l12 . . . − cosh l1n

− cosh l12 −1 . . . − cosh l2n
...

...
. . .

...

− cosh l1n − cosh l2n . . . −1

 . (2.19)

5Named for the Danish mathematician Jørgen Pedersen Gram, who met his demise in 1916 in the most

Danish way imaginable: being struck by a bicycle in Copenhagen [40].
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h1

h2
h3

ϕ
(1)
23

ϕ
(2)
31ϕ

(3)
12

h*
1

h*
3

h*
2

h1

h2

h3

h1

h2

h3

Figure 4. The vectors and angles defining a hyperbolic triangle formed by vertices h1, h2, and h3.

The lengths lij uniquely specify a simplex in hyperbolic space up to isometries and therefore

uniquely characterize a simplicial volume. We can summarize this relation as stating that

the Feynman integral În in (1.13) is given by

În =
√
σ(G) vol(lij) ,

cosh lij = Gij =
x2ij +m2

i +m2
j

2mimj
,

(2.20)

where σ(G) was defined in (1.11) and vol(lij) denotes the (unoriented) volume of a hyper-

bolic simplex in n−1 dimensions with edges of length lij , and these lengths satisfy (2.20). A

similar set of variables rij were introduced in [9], which in our notation satisfy the relation

cosh lij =
rij + r−1ij

2
. (2.21)

It follows that rij = exp lij if we choose the solution rij > 1.

2.2 Exempli gratia : the geometry of hyperbolic triangles

Unlike in Euclidean space, the volume of a hyperbolic simplex is uniquely determined by its

angles. Thus, it is worth working out the relation between the lengths lij and the dihedral

angles ϕ
(k)
ij formed by the edges connecting vertices hi and hj with a third vertex hk. We

compute these angles in the hyperboloid model, where all vertices satisfy 〈hi, hi〉 = −1.

The vertices h1, h2, h3 form a triangle with edge lengths given by l12, l13, and l23, and

we denote the angles opposite to these edges by ϕ
(3)
12 , ϕ

(2)
13 , and ϕ

(1)
23 , as shown in figure 4.

We can also define this triangle by the three space-like vectors normal to its edges, h∗1, h
∗
2,

and h∗3, as shown there. The normalization of these vectors can be chosen so that they are

dual to the original vectors h1, h2, and h3, in the sense that

〈hi, h∗j 〉 = δij . (2.22)

Note that this makes the vectors h∗j space-like. The dihedral angle between the two hyper-

planes normal to h∗i and h∗j is the complement of the angle between these vectors, namely

ϕ
(k)
ij = π − arccos

(
〈h∗i , h∗j 〉√

〈h∗i , h∗i 〉
√
〈h∗j , h∗j 〉

)
, (2.23)
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or equivalently
〈h∗i , h∗j 〉√

〈h∗i , h∗i 〉
√
〈h∗j , h∗j 〉

= − cosϕ
(k)
ij . (2.24)

In these relations we have included square root factors that are equal to unity, as this will

prove convenient below.

It follows from relation (2.22) that the Gram matrix of the dual vectors h∗i is the inverse

of the Gram matrix of hi (2.19). Computing this, we find

〈h∗i , h∗j 〉 =


−1 − cosh l12 − cosh l13

− cosh l12 −1 − cosh l23

− cosh l13 − cosh l23 −1


−1

(2.25)

∝


sinh2 l23 cosh l12 − cosh l13 cosh l23 cosh l13 − cosh l12 cosh l23

cosh l12 − cosh l13 cosh l23 sinh2 l13 cosh l23 − cosh l12 cosh l13

cosh l13 − cosh l12 cosh l23 cosh l23 − cosh l12 cosh l13 sinh2 l12

 .
Plugging the entries of this matrix into (2.23), we conclude that

ϕ
(3)
12 = arccos

(
−〈h∗1, h∗2〉√

〈h∗1, h∗1〉
√
〈h∗2, h∗2〉

)

= arccos

(
cosh l13 cosh l23 − cosh l12

sinh l13 sinh l23

)
. (2.26)

There exists a unique solution to this equation in the range 0 < ϕ
(3)
12 < π. To see this, we

assume without loss of generality that l23 ≤ l13. Then, the usual triangle inequality tells

us that 0 ≤ l13 − l23 < l12 < l13 + l23. Since the cosh function is monotonically increasing

on the positive real numbers, we have

cosh l13 cosh l23 − sinh l13 sinh l23 < cosh l12 < cosh l13 cosh l23 + sinh l13 sinh l23. (2.27)

Rearranging these inequalities, we find

− 1 <
cosh l13 cosh l23 − cosh l12

sinh l13 sinh l23
< 1. (2.28)

Since arccos is injective on this domain, this implies the value of 0 < ϕ
(3)
12 < π is unique.

We can also invert relation (2.26) (and the corresponding relations for ϕ
(1)
23 and ϕ

(2)
13 )

to compute the length l12 in terms of the angles ϕ
(k)
ij :

cosh l12 =
cosϕ

(2)
13 cosϕ

(1)
23 + cosϕ

(3)
12

sinϕ
(2)
13 sinϕ

(1)
23

. (2.29)

Again, there exists a unique solution for l12 > 0 whenever ϕ
(3)
12 +ϕ

(2)
13 +ϕ

(1)
23 < π. Using the

fact that ϕ13, ϕ23 > 0, we have 0 < ϕ12 < π − ϕ13 − ϕ23 < π; since, moreover, the cosine

decreases on the interval [0, π],

cosϕ
(3)
12 > cos

(
π − ϕ(2)

13 − ϕ
(1)
23

)
= − cosϕ

(2)
13 cosϕ

(1)
23 + sinϕ

(2)
13 sinϕ

(1)
23 . (2.30)

Hence, cosh l12 > 1 and equation (2.29) has a single positive solution.
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Rewriting relations (2.29) and (2.26) for any triple of vertices hi, hj , and hk, we have

cosϕ
(k)
ij =

cosh lik cosh ljk − cosh lij
sinh lik sinh ljk

, (2.31)

cosh lij =
cosϕ

(j)
ik cosϕ

(i)
jk + cosϕ

(k)
ij

sinϕ
(j)
ik sinϕ

(i)
jk

, (2.32)

where ϕ
(k)
ij is the angle formed between the edges emanating from hk to hi and hj , and

similarly for the other angles. Note that when ϕ
(k)
ij is a right angle, relation (2.31) reduces

to the hyperbolic Pythagorean theorem

cosh lik cosh lkj = cosh lij . (2.33)

Also, when the sides of the triangle are very small with respect to the radius of curvature of

hyperbolic space (which we have taken to be 1), we obtain the usual Pythagorean theorem

as an approximation.

2.3 Kinematic domains and space-time signatures

Clearly, the interpretation of În as a volume in hyperbolic space will only be valid in certain

kinematic regions; in particular, only for some values of Gij will the corresponding angles

and lengths ϕ
(k)
ij and lij be real numbers. Thus, we are led to ask: what are the constraints

on Gij such that a real hyperbolic simplex can be built from them?

The answer to this question turns out to be related to the space-time signature in

which we consider the integral În. Consider a set of points {hi} with the Gram matrix

Gij = −〈hi, hj〉, where G is given by some specific (but non-degenerate) choice of external

momenta and masses. We can determine the signature (n+, n−) of this kinematic point by

finding a change of basis cij such that ei = cij hj , with {cij} real and where the ei form

the basis in which the scalar product is diagonal, 〈ei, ej〉 = ±δij . The numbers n+ and n−
are then given by the number of positive and negative entries on the diagonal of 〈ei, ej〉,
respectively.

Consider, for instance, the signature of the Gram matrix encountered in the case of

a hyperbolic triangle (n = 3). The characteristic polynomial of this matrix, which can be

compactly expanded in powers of x+ 1, is

− (x+1)3 + (cosh2 l12 + cosh2 l13 + cosh2 l23)(x+1) − 2 cosh l12 cosh l13 cosh l23. (2.34)

Computing the discriminant of this cubic equation in x+ 1 we find it to be

4(cosh2 l12 + cosh2 l13 + cosh2 l23)
3 − 4× 27 cosh2 l12 cosh2 l13 cosh2 l23, (2.35)

which, due to the inequality between arithmetic and geometric means, must be positive.

This implies that all the roots of this polynomial are real.

Let us now assume that the space-time signature of our kinematic point is (2, 1),

matching the scalar product (2.1) of the ambient space E2,1. This implies that the product

of the roots of (2.34) in the variable x has to be negative:

− 2 cosh l12 cosh l13 cosh l23 + cosh2 l12 + cosh2 l13 + cosh2 l23 − 1 < 0, (2.36)
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where this inequality can be rewritten as

(cosh l12 − cosh l23 cosh l13)
2 < (cosh2 l13 − 1)(cosh2 l23 − 1) = sinh2 l13 sinh2 l23. (2.37)

By comparison to equation (2.31), we see that this condition implies cos2
(
ϕ
(3)
12

)
< 1. More-

over, after extracting the square root and using the identity cosh a cosh b + sinh a sinh b =

cosh(a + b), we also find the triangle inequality l12 < l13 + l23. The same reasoning can

be applied to any orientation of the triangle, giving all three triangle inequalities and the

same constraints on all three angles. We conclude that the correspondence (2.20) is valid

for Î3 in all kinematic regions corresponding to (2, 1) signature.

The converse of this statement also holds in general — that is, the Gram matrix of

n vectors on the upper sheet of the hyperboloid in En−1,1 must have signature (n−1, 1).

Any subset of k such vectors also generates a hyperbolic subspace, and hence their Gram

matrix also has signature (k−1, 1). This is analogous to the situation in Euclidean space,

where any n vectors of unit norm have signature (n, 0), and any subset of k such vectors

must similarly have signature (k, 0).

For more general signatures there are more possibilities. Consider n vectors with norm

−1 in an embedding space of signature (n−p, p). (We could equivalently take their norm

to be 1, and exchange n−p ↔ p.) Given any subset of these vectors, we can compute the

signature of their Gram matrix. Which signatures are possible for the Gram matrices of

all 2n possible subsets of the initial vectors?

There are two constraints these signatures must satisfy. First, the signature (k−q, q) of

any subset of k vectors must satisfy k−q ≤ n−p and q ≤ p. This immediately implies that

the signature of all n vectors is the same as that of the embedding space. Second, whenever

an additional vector is added to a subset of k vectors with signature (k−q, q), the resulting

signature can only be (k−q+1, q) or (k−q, q+1). To determine which it is, we project the

new vector onto the orthogonal complement of the span of the original k vectors. Whether

this orthogonal projection has positive or negative norm tells us whether the new vector

has increased the number of positive or negative eigenvalues of the Gram matrix.

More generally, in kinematic regions corresponding to signature (n−p, p), the integral

În can be interpreted as the volume of an n-simplex by taking −Gij to describe the Gram

matrix of a set of n vectors with norm −1 embedded in En−p,p. Loosely, this corresponds

to interpreting the entries of −Gij alternately as the cosine or the hyperbolic cosine of

some angle, depending on whether the magnitude of the entry is greater than or less than

unity. To reach such a region from regions of hyperbolic signature (where the correspon-

dence (2.20) with all hyperbolic cosines holds) will in general require an intricate set of

analytic continuations. However, the connection between the geometry of the n-simplex

embedded in En−p,p and the external kinematics entering În should still be given by a pro-

jection of the simplicial vertices to the boundary of the hyperboloid on which these vertices

lie, analogously to equations (2.13)–(2.14). For general p, the topology of this boundary

(within the embedding space) will be given by a products of spheres Sn−p−1× Sp−1, where

S−1 should be interpreted as the empty set when p equals 0 or n.6 Note that when p = 1,

6As a consequence, no such boundary exists in the spherical signatures (n, 0) and (0, n) for us to project
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we recover the hyperbolic case described in section 2.1, where Sn−1 × Z2 = Sn−1∪Sn−1
corresponds to union of the (n−1)-dimensional spheres on the boundaries of the upper and

lower branches of the hyperboloid.

In other contexts, these regions with different space-time signatures have been seen to

fit neatly together in real kinematics. For example, in four dimensions kinematic regions

of signature (3, 1) and (2, 2) will be separated by a codimension-one boundary of signature

(2, 1) along which all external momenta lie in a three-dimensional hypersurface. Along this

boundary, quantities that are odd under space-time parity must vanish. This partitioning

of kinematic space into regions of different signature can be nicely visualized when the

number of kinematic variables is small, for instance in massless six-particle scattering in

planar N = 4 super-Yang-Mills theory [41–44], which only depends on three kinematic

invariants due to dual conformal symmetry [38, 45–49]. This will also be the case for the

bubble and triangle integrals we consider in the next section.

We are unaware of the volumes of simplices being studied beyond the cases of Euclidean

and hyperbolic (Lorentzian) signature, although functional representations of volumes that

are valid in both of these signatures were considered in [13]. It would therefore be interesting

to study volumes with ultra-hyperbolic signature. In particular, it should be possible to

extend the formula for the Euler characteristic that relates volumes in even dimensions to

volumes in odd dimensions (which we discuss in section 5) to these more general cases.

3 All-mass one-loop integrals in low dimensions

As a warm-up, we first examine the correspondence between n-gons in n dimensions and

simplicial volumes for the cases of the bubble and the triangle.7 These integrals are simple

enough that the results of direct Feynman integration can be straightforwardly compared

to the corresponding hyperbolic volumes, providing a valuable cross-check on (2.20). In this

section, we also explore how the kinematic domains of these integrals are tiled by regions

of different space-time signature, illustrating features of these integrals that we expect to

hold for all n.

3.1 The all-mass bubble integral in two dimensions

The simplest integral that has a hyperbolic volume interpretation is the one-loop massive

bubble in two dimensions. This integral depends on two internal masses, m1 and m2, and

one external momentum. From the Feynman integral representation (1.15) it can be easily

evaluated to give

Î2 = −i σ(G) log r12 := − iσ(G) log
(
G12 +

√
G212 − 1

)
, (3.1)

onto. However, there is still a way to associate În with the volume of a simplex in these signatures [5]. We

leave an exploration of this point of view, which is valid in a general number of space-time dimensions, to

a forthcoming companion paper [1].
7An even simpler example is possible: that of a one-dimensional tadpole. This is an integral given by

I1 =

∫ ∞
−∞

mdx

(x− x0)2 +m2
= π.

We thank S. Abreu for a comment which prompted us to consider this example.
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where we have made use of the variables introduced in equation (2.21). Thus, r12 corre-

sponds to the larger of the two roots of the equation

1

2

(
r12 +

1

r12

)
=
x212 +m2

1 +m2
2

2m1m2
= G12 ; (3.2)

specifically, we require that r12 > 1 (in accordance with the argument of the logarithm

in (3.1)).

Let us now show that (3.1) is precisely the volume of a simplex in H2 whose geometry

is determined by the kinematics of the two-point Feynman diagram depicted in figure 1.

As per equations (2.13)-(2.14), the dual points x1 and x2 correspond to points on the

boundary ∂H2, while the internal masses m1 and m2 dictate how far from the boundary

the two vertices of the corresponding hyperbolic simplex are located; in particular, a value

of mi = 0 implies that the ith simplicial vertex coincides with the dual point xi on ∂H2.

The volume of a hyperbolic 1-simplex is just the length of the geodesic between its

vertices, h1 and h2. From (2.19), this is just

l12 = arccosh(−〈h1, h2〉) = arccoshG12 = log r12, (3.3)

matching the answer for Î2 found through direct integration. Finally, we note that the

massless limit of Î2 is divergent when either of its propagators is massless. Geometrically,

this corresponds to the corresponding simplicial vertex being sent to the boundary of H2,

which causes the length of the geodesic to diverge.

3.2 The all-mass triangle integral in three dimensions

Let us now consider the triangle integral in three dimensions, which can be treated by the

same methods. This integral was computed in [50] using a judicious choice of cylindrical

coordinates, and can be put in the form

Î3(G) = 2 arctan

( √
detG

1 + G12 + G13 + G23

)
. (3.4)

Note that arctan has unit transcendental weight and can be rewritten as a log, but only

at the expense of introducing imaginary arguments.

We would again like to see that the same answer can be computed directly as a hyper-

bolic volume, which in this case is an area. But first, let us discuss the kinematic region

in which this correspondence is expected to hold. Recasting inequality (2.36) in terms of

the kinematic variables Gij , we have

detG = −2G12G13G23 + G212 + G213 + G223 − 1 < 0, (3.5)

which must be satisfied whenever 〈hi, hj〉 = −Gij has an odd number of negative eigen-

values. The surface where the left hand side of (3.5) vanishes is plotted in figure 5. The

inner (orange) region that this surface bounds must have signature (0, 3), since at the ori-

gin −G becomes proportional to the identity matrix. The unshaded region, which shares

a codimension-one boundary with the inner region, has signature (1, 2). The remaining
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Figure 5. The boundary between regions of different space-time signature in triangle kinematics,

as dictated by the inequality (3.5). The cube separating the inner and outer shaded regions marks

the boundaries Gij = ±1.

regions of kinematic space, shown in purple, have signature (2, 1), corresponding to the

hyperbolic signature discussed in section 2.1. The tiling of these regions exhibits a clear

resemblance to the regions of different space-time signature encountered for six-particle

scattering in planar N = 4 supersymmetric Yang-Mills theory (see for instance [41, 43]),

although in that case there are no regions of spherical signature since the scattering parti-

cles are massless.

The area of a hyperbolic triangle is given by its angles as

π − ϕ(3)
12 − ϕ

(2)
13 − ϕ

(1)
23 . (3.6)

From equation (2.31) and the identification of cosh lij with Gij we have

cosϕ
(k)
ij =

GikGjk − Gij√
G2ik − 1

√
G2jk − 1

. (3.7)

Using the identity arccos a = arctan
(√

1−a2
a

)
and the fact that Gij > 1 in this region, we

can express ϕ
(k)
ij as

ϕ
(k)
ij = arctan

( √
detG

GikGjk − Gij

)
. (3.8)

Next we substitute (3.8) into (3.6) and demonstrate the latter reproduces the triangle re-

sult of (3.4). Knowing that we need to cancel off the factor of π in (3.6), we invert the

arctangent’s arguments in two of the angles using arctan a = π
2 − arctan 1

a . After com-

bining everything into a single term using arctan a± arctan b = arctan
(
a±b
1∓ab

)
, the identity

arctan
(

2a
1−a2

)
= 2 arctan a allows us to reproduce (3.4) as desired.

In fact, the same expression is also valid in the spherical region corresponding to (0, 3)

space-time signature. As can be seen in figure 5, this region intersects the hyperbolic region

considered above at the point G12 = G13 = G23 = 1; thus, we can analytically continue into
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spherical signature along the line G12 = G13 = G23 = z. Rewriting (3.4) as a logarithm and

restricting to this line, we have

Î3

(
G
∣∣
G12=G13=G23=z

)
= i log

(
(1 + 3z)− i

√
(z − 1)2(1 + 2z)

(1 + 3z) + i
√

(z − 1)2(1 + 2z)

)
, (3.9)

which is valid both in the hyperbolic region z > 1 and the Euclidean region z < 1. To see

this, notice that no imaginary part will be generated when we analytically continue into

the spherical region z < 1 no matter which way we continue (z − 1)→ e±iπ|(z − 1)|. The

net effect, with either choice, is to flip the signs in front of the square roots, inverting the

argument of the logarithm. When considered beyond this particular line through kinematic

space, the only alteration can arise as a phase due to
√
σ(G). Thus, we may conclude that

2 arctan

( √
detG

1 + G12 + G13 + G23

)
=:V3(G)

√
σ(G) , (3.10)

holds in every signature. Notice that we have adopted the notation (both here and below)

that Vn(G) denotes the volume of an (n − 1)-dimensional simplex in spherical signature

that has edges of length Gij = cos lij .

Note that if we run the trigonometric argument below (3.6) in reverse while using

Gij = cos lij to define a set of edge lengths, (3.10) can be understood as giving the area of

a spherical triangle with angles ϕ
(k)
ij :

− π + ϕ
(3)
12 + ϕ

(2)
13 + ϕ

(1)
23 (mod 4π) . (3.11)

This differs from the area for a hyperbolic triangle (3.6) only by an overall sign. This area

is interpreted modulo 4π since the area of a spherical triangle cannot be larger than the

area of the sphere in which it’s embedded.

4 The all-mass box integral in four dimensions

Let us now consider the all-mass box integral in four dimensions. In kinematic regions

with space-time signature (3,1), this integral will be given by the volume of a hyperbolic

tetrahedron formed by four vertices hi in H3. This kinematic region is picked out by

five conditions in addition to our usual requirement that Gij ≥ 1. Four inequalities come

from the requirement that the codimension-one faces of the tetrahedron form hyperbolic

triangles — that is, the requirement that (3.5) be satisfied for any choice of three of the

four vertices hi. As per the discussion in section 2.3, once these constraints are satisfied the

Gram matrix of the full tetrahedron can only have space-time signature (3, 1) or (2, 2). The

last constraint is thus supplied by the requirement that the product of all four eigenvalues

of G be negative, namely detG < 0. Note that this last requirement ensures that the

normalization of (1.13),
√

detG, is purely imaginary.

4.1 The Murakami-Yano formula

A concise formula for the volume of a hyperbolic tetrahedron was given by Murakami and

Yano in [30]. To present this formula, we define a set of dual vectors h∗i by the orthogonality

condition

〈hi, h∗j 〉 = δij , (4.1)
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just as we did for the hyperbolic triangle in section 2.2. Importantly, these space-like

vectors encode the full geometry of the tetrahedron; in particular, its codimension-one faces

(the hyperbolic triangles formed out of any three of the tetrahedron’s vertices) are each

orthogonal to one of these dual vectors (namely, the vector dual to the fourth tetrahedron

vertex). The dihedral angles between these faces are thus encoded in the angles between

the dual vectors.

To compute these angles for a tetrahedron described by the Gram matrix −G, we rescale

the rows and columns of G−1 (in a manner that keeps it symmetric) so that the resulting

matrix has diagonal entries equal to −1. This defines for us a matrix G∗ with entries

G∗ij :=
G−1ij√
G−1ii

√
G−1jj

=: − cos θij , (4.2)

where our notation is such that ‘G−1ij ’ denotes a component of the matrix G−1. The angle

θij defined in the last step gives the angle between the dual vectors h∗i and h∗j .
In hyperbolic signature, the angles θij are guaranteed to be real; as such, it is natural

to define a set of phases

a := eiθ12 , b := eiθ13 , c := eiθ23 ,

d := eiθ34 , e := eiθ24 , f := eiθ14 .
(4.3)

Finally, we define a weight-two function

U(z) := Li2(z) + Li2(abdez) + Li2(acdfz) + Li2(bcefz)

− Li2(−abcz)− Li2(−aefz)− Li2(−bdfz)− Li2(−cdez)
(4.4)

and a pair of roots

z± := − 2
sin θ12 sin θ34 + sin θ13 sin θ24 + sin θ23 sin θ14 ±

√
detG∗

ad+ be+ cf + abf + ace+ bcd+ def + abcdef
. (4.5)

The volume of the designated tetrahedron is then given by

vol
(
G
)

=
1

4
=
[
U(z+)− U(z−)

]
, (4.6)

where = denotes the imaginary part. This renders the (kinematic part of the) all-mass box

in four dimensions to be

Î4
(
G
)

=
√
σ(G) vol

(
G
)

=
√
σ(G)

1

4
=
[
U(z+)− U(z−)

]
(4.7)

due to the normalization for I4 chosen in (1.15).

The Murakami-Yano expression for the all-mass box (4.7) agrees with those already

found in the physics literature (see for example [9, 26]), but has several remarkable fea-

tures that make it distinct. In addition to the manifest simplicity of (4.7), it exhibits

full permutation invariance among all four hyperbolic vertices, and correspondingly in the
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external particles’ dual-momentum variables’ indices. This symmetry amounts to an in-

variance of Î4(G) under permutations of the rows and columns Gi j 7→ Gσ(i)σ(j) for any

σ ∈ S4. To see this, it is sufficient to notice that z+ and z− are separately invariant, and

the arguments of the dilogarithms in (4.4) form a three-orbit {abde z, acdf z, bcef z} and

four-orbit {−abc z,−aef z,−bdf z,−cde z}. (Given the invariance of z±, these orbits are

easy to identify from the index structure defining the phases (4.3).)

4.2 The all-mass box in Euclidean signature

It turns out that Murakami has also given a compact formula for the volume of a

tetrahedron in spherical signature [31]. This formula makes use of the angular vari-

ables introduced in (4.3), but requires the (positive-root) solution ζ+ of the quadratic

q2ζ
2 + q1ζ + q0 = 0, where

q0 := ad+ be+ cf + abf + ace+ bcd+ def + abcdef,

q1 := − (a− 1/a)(d− 1/d)− (b− 1/b)(e− 1/e)− (c− 1/c)(f − 1/f),

q2 := (ad)−1 + (be)−1 + (cf)−1 + (abf)−1 + (ace)−1

+ (bcd)−1 + (def)−1 + (abcdef)−1.

(4.8)

We also require the function

L(ζ) :=
1

2

[
Li2(ζ) + Li2

(
ζ

abde

)
+ Li2

(
ζ

acdf

)
+ Li2

(
ζ

bcef

)
−Li2

(
− ζ

abc

)
− Li2

(
− ζ

aef

)
− Li2

(
− ζ

bdf

)
− Li2

(
− ζ

cde

)
+log(a) log(d) + log(b) log(e) + log(c) log(f)

]
.

(4.9)

In terms of L(ζ+), the volume of the spherical tetrahedron is given by

V4(G) = −< (L(ζ+)) + π

(
arg(−q2) +

1

2

∑
i<j

θij

)
− 3π2

2
(mod 2π2) . (4.10)

Like with the formula for the volume of a spherical triangle, (3.11), this formula is only

valid modulo 2π2 because the volume of a tetrahedron embedded in a four-sphere cannot

be larger than the volume of the sphere itself. It can be checked that Î4
(
G
)

= V4(G) in this

region, as expected. This formula also makes manifest the permutation invariance of this

integral, in the same way as was observed in (4.7).

4.3 Recasting Murakami-Yano from angles to ‘lengths’

While equations (4.7) and (4.10) exhibit remarkable simplicity, one reasonable complaint

about them is the sheer definitional distance between our kinematic variables (the Man-

delstams x2ij and masses m2
i ) and the angular variables appearing in the dilogarithms,

logarithms, and roots. The algebraic complexities involved in these definitions pose no

problem for numeric evaluation, but obfuscate the physically-relevant analytic structure of
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the all-mass box. This can be remedied by fully unpacking the definitions (4.3) and (4.5),

and simplifying what emerges.

As we have already seen (for instance in equation (3.1)), it can be a good idea to use

hyperbolic ‘length-like’ variables to describe the kinematic variables in G. Specifically, we

might want to recast the Mandelstam invariants x2ij and internal masses m2
i in terms of

the rij variables defined in (2.21). From the definition of G∗ in (4.2), the angular variables

in (4.3) can be expressed as

a =
1√
G−111 G

−1
22

(
G−112 +

sinh l34√
detG

)
, b =

1√
G−111 G

−1
33

(
G−113 +

sinh l24√
detG

)
,

c =
1√
G−122 G

−1
33

(
G−123 +

sinh l14√
detG

)
, d =

1√
G−133 G

−1
44

(
G−134 +

sinh l12√
detG

)
,

e =
1√
G−122 G

−1
44

(
G−124 +

sinh l13√
detG

)
, f =

1√
G−111 G

−1
44

(
G−114 +

sinh l23√
detG

)
,

(4.11)

where sinh lij = 1
2(rij − 1/rij) =

√
G2ij − 1 and G−1ij :=

(
G−1

)
ij

are elements of the inverse

of G as before. In terms of these variables, one might expect that the arguments of the

polylogarithms appearing in (4.4) would involve lengthy algebraic expressions (arising from

the inverse matrix elements) as well as many algebraic roots. It turns out that this is not

the case. In fact, when G is expressed in terms of the rij , the only algebraic root appearing

in any of the arguments of the polylogarithms of U(z) will be
√

detG.

As discussed above, the function U(z) can be generated as a sum over three orbits

which permute the rows and columns of Gij . Thus, it suffices for us to give three of these

expressions, and generate the rest via relabelings. We therefore consider the following three

arguments of dilogarithms in U(z−) as defined by (4.4),

g0(rij) := z− , g1(rij) := abde z− , g2(rij) := − abc z− , (4.12)

where we note again that all of the square roots in (4.11) other than
√

detG appear in

pairs and drop out. Thus, these functions involve the single algebraic root

δ := 4(r12r13r14r23r24r34)
√

detG , (4.13)

where we have introduced this notation because δ2 will be a polynomial in the rij variables

with integer coefficients.

In terms of δ, the arguments of the polylogarithms g0(rij), g1(rij), and g2(rij) can be

compactly expressed as

g0 := 1 +
δ

ρ y0

(
δ + x0

)
, g1 := 1 +

δ

ρ y1

(
δ + x1

)
, g2 := 1 +

δ

ρ y2

(
δ + x2

)
, (4.14)

where ρ, yi, and xi are given by

y0 := r123r124r134r234 , y1 := r12r24r43r31 r
[1]
23 r

[2]
14 r

[3]
41 r

[4]
32 , y2 := r123r123 r

[4]
12 r

[4]
23 r

[4]
31 ,

x0 := ρ+ (r12r13r14r23r24r34)

(
r12
r34

+
r13
r24

+
r14
r23

+
r23
r14

+
r24
r13

+
r34
r12
−r12r34−r14r23−r13r24

)
−
(
r12r23r34r41 + r13r34r42r21 + r14r42r23r31

)
,
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x1 := x0 + 2
(
1− r12r13r24r34

)(
r123 − r[1]24 r23r34 − r

[2]
14 r13r34 − r

[3]
12 r14r24

)
,

x2 := x0 + 2 r123

(
1−r124−r134−r234 + r

[4]
12 r

[4]
13 r

[4]
23 + r14r24r34

(
r12r34 + r23r41 + r13r24

)
−
(
r14r24r34

)2)
,

ρ := 2
(
1−
(
r123 + r124 + r134 + r234

)
+
(
r12r23r34r41 + r13r34r42r21 + r14r42r23r31

))
,

(4.15)

where we have made use of the short-hand

rijk := rijrjkrki , rijk := rijk − 1 , r
[i]
jk

:= rijrik − rjk . (4.16)

Notice that ρ, y0, and x0 are each invariant under arbitrary permutations of the rows and

columns of Gij , making the invariance of g0(rij) under these transformations manifest.

To make clear how the full set of arguments in (4.4) is generated from the three

in (4.12), we denote the images of gk(rij) under permutations σ∈S4 by

gσk := gk

(
rij
∣∣
i,j→σ(i),σ(j)

)
and write gσk := g

σ(1)···σ(4)
k . (4.17)

The function U(z−) is then given by:

−U(z−) = Li2
(
g12340

)
+ Li2

(
g12341

)
+ Li2

(
g13421

)
+ Li2

(
g14231

)
−Li2

(
g12342

)
− Li2

(
g23412

)
− Li2

(
g34122

)
− Li2

(
g41232

)
.

(4.18)

What about U(z+)? In (3, 1) signature, it turns out that z− ↔ z+ is generated by rij ↔
1/rij together with complex conjugation; in particular,

z+ = g∗0
(
1/rij

)
, abde z+ = g∗1

(
1/rij

)
, −abc z+ = g∗2

(
1/rij

)
, (4.19)

where ‘∗’ denotes complex conjugation. In this signature, complex conjugation just

amounts to changing the sign of
√

detG (when the rij ’s are all real).

The clever reader may notice that (4.7) involves only the imaginary parts of U(z±) and

be tempted to simply add to (4.18) the same expression with rij ↔ 1/rij exchanged. This

will indeed yield the correct imaginary part to reproduce Î4 in this signature. However, it

turns out to be better to keep the conjugation inside the arguments (as we will thereby

derive a formula with much greater validity). Specifically, let us define

gk(rij) :=

(
1 +

δ

ρ yk
(δ − xk)

)∣∣∣∣
rij 7→1/rij

, (4.20)

and consider the branch choice of δ to be the same for all gi and gi. This reproduces (4.19)

in (3, 1) signature, but it turns out to hold more generally. Given this definition, (4.7) can

be put in the form

Î4(rij) =
√
σ(G)

1

4
=
[

Li2
(
g12340

)
+ Li2

(
g12341

)
+ Li2

(
g13421

)
+ Li2

(
g14231

)
(4.21)

− Li2
(
g12342

)
− Li2

(
g23412

)
− Li2

(
g34122

)
− Li2

(
g41232

)
−
(
gσi ↔ gσi

)]
.
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Remarkably enough, it turns out that (4.21) holds in all space-time signatures(!). We have

checked this explicitly at many randomly chosen kinematic points with signatures (4, 0),

(3, 1), and (2, 2). Before moving on, we should mention that a different and intriguing

version of the Murakami-Yano formula expressed in terms of lengths should follow from

the work of [51]; it would be worthwhile to see how these compare.

4.4 A dihedrally-invariant kinematic limit

The all-mass integral is symmetric under arbitrary permutations of the dual coordi-

nates (xi,mi). However, there are a number of contexts in which one just wants dihe-

dral invariance in physics — for example, in the context of dual conformal (and ulti-

mately Yangian) symmetry in planar integrals in maximally supersymmetric Yang-Mills

theory [38, 49, 52–55].

One such (dihedrally invariant) limit was introduced in the so-called ‘Higgs’ regular-

ization scheme described in [56, 57] (see also [10]). Here, one considers general masses for

propagators around the perimeter of the graph in a planar ordering. Taking the points

{x1, x2, x3, x4} to be cyclically ordered, one then imposes a ‘five-dimensional on-shell’ con-

dition of the form:

x2i,i+1 + (mi −mi+1)
2 = 0 . (4.22)

Considering the definition of Gij , it is easy to see that Gi,i+1 7→ 1 in this limit:

G 7−→
(4.22)


1 1 G13 1

1 1 1 G24
G13 1 1 1

1 G24 1 1

 . (4.23)

In terms of the variables u and v introduced in [57], namely

4u :=
m1m3

x213 + (m1 −m3)2
and 4v :=

m2m4

x224 + (m2 −m4)2
, (4.24)

the Gram matrix above takes the form

G 7−→
(4.22)
(4.24)


1 1 1 + 2

u 1

1 1 1 1 + 2
v

1 + 2
u 1 1 1

1 1 + 2
v 1 1

 . (4.25)

Notice that in terms of these variables,
√

detG = 4
uv

√
1 + u+ v, and we can choose the

corresponding variables rij to be

r13 := 1 + 2
(
1 +
√

1 + u
)
/u and r24 := 1 + 2

(
1 +
√

1 + v
)
/v (4.26)

while all other rij = 1.

In this limit, the formula for Î4 simplifies considerably. In particular, symmetry con-

siderations allow us to identify

g12340 = g14231 , g12341 = g13421 , g12342 = g34122 , g23412 = g41232 . (4.27)

– 24 –



J
H
E
P
0
8
(
2
0
2
0
)
0
2
9

This collapses the 16-term formula for Î4(rij) in (4.21) to

Î4(r13, r24)
∣∣∣
ri,i+1=1

=
√
σ(G)

1

2
=
[

Li2
(
g12340

)
+ Li2

(
g12341

)
− Li2

(
g12342

)
− Li2

(
g23412

)
(4.28)

− Li2
(
g12340

)
− Li2

(
g12341

)
+ Li2

(
g12342

)
+ Li2

(
g23412

)]
,

which is considerably more compact.

It is interesting to note that there is essentially no difference between the limit we

have just considered — in which there are four unequal internal masses while the external

momenta are constrained by (4.22)—and the more familiar kinematic limit in which all

internal masses are equal while all external particles are massless. Although it is easy to

see that setting all mi equal implies x2i,i+1 = p2i = 0 by (4.22), it is less obvious that this

has no effect on the formula in (4.28). The latter fact can be explained by noticing that

these two limits are conformally equivalent (even though the physical interpretation of the

two cases is quite different). Using internal masses to regulate the infrared divergences of

one- and higher-loop integrals is an old idea; thus, what is interesting here is the simplicity

of the case where the internal masses are taken to be finite.

4.5 Regge symmetry

Having leveraged known expressions for the volume of geodesic tetrahedra to provide ex-

plicit formulas for the all-mass box in all (four-dimensional) space-time signatures, we close

this section by highlighting one aspect of this correspondence that we have not made use

of. Hyperbolic tetrahedra have a non-obvious Regge symmetry that resembles an identity

obeyed by 6j symbols. Namely, if we treat the lengths of the six sides of the tetrahedron as

if they were angular momentum variables and put them into 6j symbol notation, we have{
l12 l23 l13
l34 l14 l24

}
(4.29)

where the first row corresponds to a face of the tetrahedron while columns correspond to

opposite sides. This 6j symbol obeys a Regge symmetry{
l12 l23 l13
l34 l14 l24

}
→

{
s− l12 s− l23 l13
s− l34 s− l14 l24

}
(4.30)

for s = (l12 + l23 + l34 + l14)/2. The all-mass box also respects this symmetry, in which

four of its side lengths are replaced. Curiously, the volume of the tetrahedron in flat space,

given by the Cayley-Menger determinant formula

vol(lij)
2 =

1

23(3!)2

∣∣∣∣∣∣∣∣∣∣∣

0 l212 l
2
13 l

2
14 1

l212 0 l223 l
2
24 1

l213 l
2
23 0 l234 1

l214 l
2
24 l

2
34 0 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣
, (4.31)

has the same symmetry [58], as can easily be seen by making the same length substitutions.

It would be interesting to understand the physical implications of this discrete symmetry,

but we leave this to future work.
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5 Odd n-gon integrals in higher dimensions

In this section we show that În can be computed for odd n using a generalized Gauss-

Bonnet theorem, which relates the corresponding (n−1)-dimensional hyperbolic volume

to sums of lower-dimensional volumes (see for example the introduction of [15]). The

volume of the relevant (n−1)-dimensional simplices were considered in [14]; in particular,

this reference showed that the recursion formula we review below satisfies the Schläfli

differential equations.

The volumes of four- and higher-(even-)dimensional simplices were briefly treated

in [25]. Therein we find the following formula for the Euler characteristic of a hyperbolic

(n−1)-dimensional simplex ∆n−1:

χ(∆n−1) =

n−1∑
j=0,2,...

2(−1)
j
2

vol (Sj) vol(Sn−j−2)

∑
σ∈j-faces

vol(σ) polyh(σ), (5.1)

where n is assumed to be odd and

vol(Sk) =
2π

k+1
2

Γ(k+1
2 )

(5.2)

is the volume of the k-dimensional unit sphere. Since ∆n−1 is a hyperbolic simplex, the

volume of each of its faces vol(σ) will also be hyperbolic. Conversely, the polyhedral

angles polyh(σ) can be understood as spherical volumes, as follows. Consider all the

codimension-one faces of the simplex ∆n−1. Each of these faces is characterized by a

normal (or dual) vector, defined in analogy to equation (4.1). Any collection of these

dual vectors, normalized to unity, determine a spherical simplex — that is, a simplex in

signature (n, 0). The polyhedral angle of a face σ is just the simplicial volume generated

by the dual vectors associated with the codimension-one faces of ∆n−1 that are incident

with σ (or, more specifically, that contain σ as a face).

In order to apply the version of the Gauss-Bonnet formula in eq. (5.1), we make use of

the fact that vol(S−1) = 1, vol(S0) = 2, and polyh(∆n−1) = 1 by definition.8 For odd n,

we also have that χ(∆n−1) = 1. We next turn to two explicit examples, to see how (5.1)

works in practice.

5.1 The hyperbolic triangle revisited

For a triangle in two dimensions (see also [25]), the Gauss-Bonnet identity yields

1 = χ(∆2) =
2

vol(S0) vol(S1)

∑
σ0∈0-faces

vol(σ0) polyh(σ0)

+
−2

vol(S2) vol(S−1)

∑
σ2∈2-faces

vol(σ2) polyh(σ2) . (5.3)

8For k < n−1, there will be n−k−1 codimension-one faces of ∆n−1 incident with one of its k-dimensional

faces. Thus, the definition polyh(∆n−1) = 1 loosely corresponds to thinking of none of the codimension-

one faces as being incident with ∆n−1; more precisely, it follows from defining polyh(σ) to be the angle

subtended by the dual of the cone generated by σ (which is equivalent to the definition we offer in the text

for k < n−1) [25]. The fact that a zero-dimensional sphere has volume 2 follows from defining the volume

of a single point to be 1.
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Since there is only a single 2-face (the triangle itself) we can solve for its volume. Using

the fact that polyh(∆2) = 1 and plugging in the values (5.2), we find

vol(∆2) =
∑

σ0∈0-faces
polyh(σ0)− 2π . (5.4)

If we denote the dihedral angles between the edges of this triangle by α, β, and γ, the

corresponding polyhedral angles are π − α, π − β and π − β. Thus, we have that

vol(∆2) = π − α− β − γ , (5.5)

as expected (matching (3.6)).

5.2 The all-mass pentagon integral in five dimensions

Consider now the pentagon integral Î5 in five dimensions, corresponding to the four-

dimensional hyperbolic simplex ∆4, whose volume we will compute by the Gauss-Bonnet

theorem in terms of lower-dimensional volumes. Here equation (5.1) gives us

1 =
2

vol(S0) vol(S3)

∑
σ0∈0-faces

vol(σ0) polyh(σ0) (5.6)

+
−2

vol(S2) vol(S1)

∑
σ2∈2-faces

vol(σ2) polyh(σ2) +
2 vol(∆4)

vol(S4) vol(S−1)
,

which, upon plugging in the sphere volumes and solving for the volume of the pentagon,

becomes

vol(∆4) =
4π2

3
− 2

3

∑
σ0∈0-faces

polyh(σ0) +
1

3

∑
σ2∈2-faces

vol(σ2) polyh(σ2). (5.7)

The angles polyh(σ0) correspond to spherical tetrahedra formed out of four of the vectors

dual to the vertices of ∆4, and similarly each angle polyh(σ2) corresponds to the angle be-

tween a pair of these dual vectors. The volumes vol(σ2) correspond to hyperbolic triangles

formed directly out of the vertices of ∆4.

We now consider the hyperbolic pentagon whose volume gives Î5. The kinematic region

corresponding to (4, 1) signature can be worked out in the same way as for the box — we

require that all choices of four of the vertices form a hyperbolic tetrahedron (namely, that

they satisfy the constraints given in section 4), and further that the product of all five

eigenvalues of G is negative, detG < 0.

In order to make use of (5.7), we compute the matrix G∗ as we did for the box,

using equation (4.2). These dual vectors are normal to the codimension-one faces of the

pentagon, and have unit length. To compute the polyhedral angle of one of the pentagon’s

vertices hi in terms of the entries of this matrix, we consider the four codimension-one

faces incident with hi — that is, the four tetrahedra formed by the vertices {hi, hj , hk, hl},
for any choice of j, k, l ∈ {1, 2, 3, 4, 5}\{i}. The dual vector normal to each of these faces

is labeled by the single vertex it is not incident with; for instance, h∗i is normal to the only
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tetrahedron face not incident with hi. To compute the angle polyh(σ{hi}), we therefore

compute the spherical tetrahedron formed by the four dual vectors {h∗j , h∗k, h∗l , h∗m} where

j, k, l,m ∈ {1, 2, 3, 4, 5}\{i}. The geometry of this tetrahedron is described by the angles

cos θjk = G∗jk. Thus, we can compute this volume using equation (4.10) after deleting the

ith row and column of G∗. That is,

polyh(σ{hi}) = V4

(
G∗(i)
)
, (5.8)

where G∗(i) denotes the 4× 4 matrix that remains after deleting column and row i from G∗.
We also need to compute the polyhedral angle of each of the two-dimensional faces of

the pentagon. These faces are hyperbolic triangles formed by triples of vertices {hi, hj , hk},
and are incident with only two of the pentagon’s codimension-one faces. The spherical

volume formed by the pair of dual vectors normal to these codimension-one faces is therefore

polyh(σ{hi,hj ,hk}) = θl,m = arccos
(
G∗lm
)
, (5.9)

namely the angle between h∗l and h∗m, where hl, hm /∈ {hi, hj , hk}.
The final ingredients we need to make use of are just the volumes of the two-dimensional

faces themselves, which we know from section 3.2. More precisely, the volume of the face

formed by the vertices {hi, hj , hk} is given by Î3
(
G(lm)

)
, where again hl, hm /∈ {hi, hj , hk}

and the subscript in parentheses denotes deleting these rows and columns.

Putting this all together, we obtain

Î5(G) =
4π2

3
− 2

3

5∑
i=1

V4
(
G∗(i)
)

+
1

3

∑
1≤i<j≤5

arccos
(
G∗ij
)
Î3
(
G(ij)

)
. (5.10)

This gives the Feynman integral Î5 in terms of lower-dimensional simplicial volumes. Like

the all-mass box integral in (4.7), permutation symmetry is manifest, and the expression

involves only classical polylogarithms (although converting the trigonometric functions to

logs introduces imaginary arguments). While this integral depends on the solution to five

quadratic equations, these equations are individually no more complicated than what was

seen in the case of the box.

A similar formula can be derived for the volume of a spherical pentagon. Here the

factor of (−1)
j
2 is absent from equation (5.1), and the volumes of the pentagon’s faces will

also be spherical. The spherical pentagon is thus given by

V5(G) =
4π2

3
− 2

3

5∑
i=1

V4
(
G∗(i)
)
− 1

3

∑
1≤i<j≤5

arccos
(
G∗ij
)
V3
(
G(ij)

) (
mod

8

3
π2
)
, (5.11)

where the matrix of dual vectors G∗ is calculated in the same way as in the hyperbolic case,

and subscripts in parentheses again denote deleting these rows and columns. The volume

of a spherical triangle V3 was given in (3.10), and the volume of a spherical tetrahedron V4
was given in (4.10). Just like for the box, it can be easily checked that Î5(G) = V5(G) in

this region.
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We have checked these formulas in a number of ways. A simple test is to take the

simplices to be small. Then, the effect of the curvature is small and the volume can be

approximated by the volume of the simplex in Euclidean space. We have also checked

that the spherical volume (5.11) constructed out of all right angles evaluates to the ap-

propriate fraction of the embedding sphere ( 14 for a circle, 1
8 for a two-sphere, 1

16 for a

three-sphere, etc.).

5.3 The pentagon with massless internal propagators

Formula (5.10) also simplifies when some (or all) of the internal propagators become mass-

less. Let us describe what happens when we take m5 → 0, which corresponds to sending

the vertex h5 to the boundary of hyperbolic space. To compute the volume of the pentag-

onal simplex in this limit, we compute the solid angle on the unit three-sphere that this

simplex subtends at h5. This solid angle is determined by the dual vectors h∗1, h
∗
2, h

∗
3, and

h∗4 that are normal to the faces of the pentagon incident with h5.

From (1.16) we have −〈hi, h5〉 → ∞ for i 6= 5. To see what happens, we rewrite the

matrix G in a way that separates out index 5, namely

G =

(
G(5) M
MT 1

)
, (5.12)

where Mi = −〈hi, h5〉 should be thought of as a column vector of length four. The inverse

of G, which describes the set of dual vectors h∗i via (4.2), is then

G−1 = (1−MTG−1(5)M)−1

G−1(5)(1−M
TG−1(5)M) + G−1(5)MMTG−1(5) −G−1(5)M

−MTG−1(5) 1

 . (5.13)

As the dual vectors h∗1, h
∗
2, h

∗
3, and h∗4 (which all have positive norm) can be individually

rescaled by a positive number without affecting the solid angle at h5, we ignore the differ-

ence between G−1 and G∗ in what follows, and read the Gram matrix of these dual vectors

directly off of the top-left 4 × 4 block of (5.13). In the limit m5 → 0 (where Mi → ∞ for

i = 1, . . . , 4), this 4× 4 block becomes

G−1(5) −
G−1(5)MMTG−1(5)

MTG−1(5)M
. (5.14)

This Gram matrix is singular since it has a right eigenvector M with zero eigenvalue.

Hence, the normal vectors {h∗1, h∗2, h∗3, h∗4} are linearly dependent. In fact, since this Gram

matrix is computed with a positive-definite scalar product, we have
∑4

i=1Mih
∗
i = 0.

It is slightly tricky to define the solid angle generated by a set of linearly dependent

vectors. It may happen that one of these vectors lies inside the cone generated by the

others, in which case it does not contribute to the solid angle. However, this does not

happen here; from the positivity conditions on the elements of the Gram matrix for hi we

know that all the components of the vector Mi have the same sign. This fact, together with

the relation
∑4

i=1Mih
∗
i = 0 implies that none of the vectors h∗i lies in the cone generated

by the others.
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This implies that the spherical simplex defined by h∗1, h
∗
2, h

∗
3, and h∗4 spans the full

hemisphere bounded by the equatorial sphere to which they all belong. Stated differently,

these vectors span half of the volume of a three-dimensional sphere in four dimensions.

Thus, we have

polyh({h5})
∣∣∣
m5→∞

=
1

2

(
2π2
)

= π2. (5.15)

The other volumes can all be calculated as before, using the −〈hi, h5〉 → ∞ limits of (5.12)

and (5.14).

When all the masses are taken to zero, the simplex corresponding to Î5 is ideal, and

all the angles polyh(σ{hi}) become π2. In this limit, the two-dimensional faces also be-

come ideal triangles, and we have V3(G(ij)) = π. Taking both of these simplifications into

account, (5.10) becomes

Î5

(
G
∣∣
mi=0

)
= −2π2 +

π

3

∑
1≤i<j≤5

arccos
(
G∗ij
)
. (5.16)

This can be compared to [11], where this formula was worked out using different methods

(see also [25]).

5.4 All-mass integrals in higher dimensions

The computational strategy described above generalizes to all odd n. In particular, (5.1)

can be recast as

În(G) = (−1)
n−1
2

π
n
2

Γ
(
n
2

) −( n−3∑
j=0,2,...

(−1)
n+j−1

2

Γ
(
n−j−1

2

)
Γ
(
j+1
2

)
2Γ
(
n
2

) (5.17)

×
∑

i1<···<in−j−1̂

Ij
(
G(i1···in−j−1)

)
Vn−j−1

(
G∗i1···in−j−1

))

after plugging in the volume of the k-dimensional unit spheres, Îk for all the hyperbolic vol-

umes, and Vk for all the spherical volumes. As can be seen from the first term, this formula

is expected to lead to an expression with transcendental weight n−1
2 . Note that (5.17) is

not quite a recursion formula, since it requires computing increasingly higher-dimensional

spherical volumes in addition to the lower-point hyperbolic volumes În−2k.
For the n-gon with massless internal propagators, the spherical volumes Vk are all

ideal and can be computed as in the case of the massless pentagon; namely, Vk is given by

half the volume of the unit (k−1)-sphere. Thus, the Gauss-Bonnet theorem in spherical

signature can be used to compute the (internally) massless limit of În for arbitrarily large

(odd) n.

6 The Schläfli formula and branch cut structure

Feynman integrals only develop branch cuts at kinematic loci where internal propagators go

on-shell. It therefore seems worth exploring the interplay of these physical restrictions with
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the geometry of simplicial volumes. A natural tool for doing this is the Schläfli formula,

which expresses the differential volume of a hyperbolic simplex as a function of the dihedral

angles and volumes formed at the intersections of its codimension-one faces [33]:

dvol(∆n−1) = − 1

n− 2

∑
σ∈(n−3)-faces

vol(σ)dθ(σ). (6.1)

Here ∆n−1 is an (n−1)-dimensional hyperbolic simplex, the sum is over all codimension-

two faces (which are in one-to-one correspondence with intersections of codimension-one

faces), and θ(σ) is the dihedral angle formed by ∆n−1 along the face σ. A similar formula

(with opposite sign) holds for spherical simplices.

Each of the faces of ∆n−1 is itself a simplicial volume, so the Schläfli formula can be

applied recursively. In particular, (6.1) can be used to determine the symbol [32] of these

volumes, where the letters appearing in the symbol will be just the exponentiated dihedral

angles exp(iθ) [15, 22, 27, 28]. Thus, the Schläfli formula must encode the location of all

physical branch cuts that appear in În.

6.1 Symbols for all n

When n is even, recursive application of (6.1) to a simplex ∆n−1 will eventually terminate

in a sum over its one-dimensional faces. These faces are just the geodesics between pairs of

vertices {hi, hj}, namely the bubble integrals considered in section 3.1. It therefore follows

from equation (3.1) that the first entries of În will always be drawn from the set of variables

{rij} defined in (2.21). This corresponds to a massive version of the first entry condition

considered in [59], similar to what was observed in [34, 60].

The second entries will be determined by the dihedral angles formed between pairs of

two-dimensional faces. These angles are given by the matrices G∗ that describe tetrahedra

formed by any four vertices of ∆n−1, as per equation (4.2). In particular, specializing

to the tetrahedron formed by vertices {hi, hj , hk, hl}, the dihedral angle formed along the

edge connecting vertices hi and hj is given by arccosG∗kl, where {i, j} ∩ {k, l} = ∅. This

means that the corresponding symbol entry is exp(i arccosG∗kl) = r∗kl, where r∗kl satisfies

the relation

G∗kl =
r∗kl + (r∗kl)

−1

2
(6.2)

in analogy with equation (2.21). Note that these are precisely the variables (4.3) that

appear in the Murakami-Yano formula. Solving for r∗kl, we have

r∗kl =
detG(k 6=l) ±

√
− detG detG(kl)√

detG(k)
√

detG(l)
, (6.3)

where G is (minus) the Gram matrix describing the vertices {hi, hj , hk, hl} as usual, and

G(k 6=l) denotes the matrix G with column k and row l deleted.

Applying this argument iteratively, we deduce that the jth symbol entries in În will be

drawn from an analogous set of variables — namely, those given by evaluating (6.3) on the
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Gram matrices that describe hyperbolic simplices formed out of any 2j of the n vertices

defining În. Specifically, the Schläfli formula gives us

S
(
În
)

=
∑

ri1i2 ⊗ r
∗(i1i2)
i3i4

⊗ r∗(i1i2i3i4)i5i6
⊗ · · · ⊗ r∗(i1···in−2)

in−1in
, (even n) (6.4)

where the sum is over the partitions of {1, . . . , n} as a union of disjoint pairs {i1, i2}∪
{i3, i4}∪ . . .∪{in−1, in}, and where r

∗(i1···i2j)
i2j+1i2j+2

denotes r∗i2j+1i2j+2
as given in (6.3) when the

right hand side is evaluated on the 2j × 2j matrix formed by the rows and columns of the

full n × n Gram matrix with indices {i1, . . . , i2j}. It is worth comparing this formula for

S
(
În
)

with the results of [34]; in particular, by comparing (6.3) with equation (D.24) of

that paper, one can identify r
∗(i1i2)
i3i4

with the double cut of the box integral on propagators

i1 and i2, r
∗(i1i2i3i4)
i5i6

with the quad cut of a hexagon on propagators i1, . . . , i4, and so on.

The full symbol of these integrals is assembled in equation (9.24) of that paper, and can be

seen to have the exact same structure as (6.4). These results can also be compared with

those of [27].

For odd n, the recursive application of (6.1) to ∆n−1 will terminate in a sum over its

two-dimensional faces. We can read off the corresponding first entries from the triangle

integral (3.4), after converting the arctan to a logarithm:

Î3(G) = i log

(
i(1 + Gjk + Gjl + Gkl) +

√
detG

i(1 + Gjk + Gjl + Gkl)−
√

detG

)
=:i log(Rjkl) , (6.5)

where −G is the Gram matrix formed by any three vertices {hj , hk, hl} of ∆n−1, and we

denote the corresponding symbol letter by Rjkl. Subsequent letters can be determined in

the same way as for even n. Thus, we have

S(În) =
∑

Ri1i2i3 ⊗ r
∗(i1i2i3)
i4i5

⊗ r∗(i1i2i3i4i5)i6i7
⊗ · · · ⊗ r∗(i1···in−2)

in−1in
, (odd n) (6.6)

where the sum is over all partitions of {1, . . . , n} into one triplet plus pairs, and the Gram

matrix defining r
∗(i1···i2j−1)
i2j i2j+1

in (6.3) is understood to be the submatrix of G formed by the

rows and columns with indices in {i1, . . . , i2j−1}.

6.2 Branch cuts and iterated discontinuities

To interpret this physically, let us briefly analyze the branch cuts that appear in these

symbol entries. Considering the first entry in equation (6.4), let us recall the definition of

rij from (2.21) and solve for rij in terms of xij , mi, and mj . We find the two solutions

r±ij =

m2
i +m2

j + x2ij ±
√(

x2ij + (mi +mj)2
)(
x2ij + (mi −mj)2

)
2mimj

. (6.7)

There are two algebraic branch points in r±ij due to the square root, at the threshold

x2ij = −(mi +mj)
2 and at the pseudothreshold x2ij = −(mi −mj)

2. The Riemann surface

of rij as a function of x2ij can be constructed as follows. The complex plane with a cut

between the two algebraic branch points has the topology of a punctured disk with the

boundary being the cut, while the puncture corresponds to the point at infinity. To obtain
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the Riemann surface we glue this punctured disk to a second punctured disk and obtain

a sphere with two punctures. These two punctures are logarithmic branch points. Branch

cuts associated with internal masses have also been studied for the triangle integral in 4−2ε

dimensions in [60], and are a general feature of massive Feynman integrals. Physically,

logarithmic branch points appear when the internal masses vanish.

It is easy to see from (6.3) that there will be additional algebraic branch cuts in the

deeper entries of the symbol, giving rise to a complicated analytic structure. To probe

the existence of logarithmic branch cuts, though, we merely need to search for kinematic

loci where the symbol letter r
∗(i1···ij−2)
ij−1ij

vanishes or becomes infinite.9 This happens, for

instance, when Gij−1ij → ±∞. However, there exist additional logarithmic branch cuts

that end on loci depending on multiple kinematic invariants (for instance, where one of the

denominator factors in (6.3) vanishes).

A similar set of observations can be made when n is odd. The symbol letter Rjkl
has logarithmic branch points starting at all three of the thresholds x2jk = −(mj +mk)

2,

x2jl = −(mj +ml)
2, and x2kl = −(mk +ml)

2. The letters that appear in subsequent symbol

entries are analogous to those appearing for even n, and have logarithmic branch cuts that

in general depend on multiple kinematic invariants.

We note, finally, that the logarithmic branch cuts we have identified in the first and

second entries allow for double discontinuities that seem to violate the Steinmann rela-

tions [62–64] (as they are applied, for instance, in [65–69]). We leave the resolution of this

apparent discrepancy to future work.

7 Conclusions and open questions

In this paper, we have further explored the correspondence between one-loop Feynman

integrals and simplicial volumes, expanding on previous studies of the geometry of these

integrals [5, 6, 11, 12, 15, 22, 24–28]. We have focused on the class of all-mass n-particle

integrals in n dimensions, leaving a study of these integrals in general space-time dimension

to a forthcoming companion paper [1]. In n dimensions, these integrals respect a dual

conformal symmetry, and evaluate to generalized polylogarithms of uniform transcendental

weight bn/2c (times a kinematic-independent prefactor).

Using this correspondence, we have provided new dilogarithmic expressions for the all-

mass box integral in four dimension and the all-mass pentagon integral in five dimensions,

and have additionally studied a number of their kinematic degenerations. Unlike existing

dilogarithmic formulas for the all-mass box [7–9], the form given in (4.7) makes manifest the

permutation and conformal symmetries of this integral, and only involves a single algebraic

root. The expression for the all-mass pentagon given in (5.10) shares these properties,

except that it involves a five-orbit of algebraic roots. To our knowledge, the latter integral

9In general, one should first make sure to express a symbol in terms of a multiplicatively independent

alphabet of symbol letters to ensure that one doesn’t encounter spurious branch cuts that cancel between

terms (in particular, when symbol letters are algebraic, this can prove to be surprisingly complicated [61]).

However, the Schläfli formula ensures this will not be a problem insofar as each symbol letter in (6.4) occurs

with a unique sequence of letters in front of and behind it; thus, it cannot mix with any other letters for

generic kinematics.
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has not previously appeared in the physics literature (although the limit with massless

internal lines was computed in [11]). These expressions for the box and pentagon only

involve 16 and 80 dilogarithms, respectively; it is worth wondering whether there exists

another form of either function that involves fewer terms.

While we have given formulas for the all-mass box in all (four-dimensional) space-

time signatures, and for the pentagon in spherical and hyperbolic signatures, it is worth

investigating whether these regions can be understood as part of a more unified geometric

picture. For instance, geodesics in the projective model can intersect at points outside

of hyperbolic space (understood as the interior of the unit ball centered at (0, . . . , 0, 1) in

En−1,1). This leads to generalized hyperbolic polytopes, where the exterior vertices are

truncated by polar hyperplanes with respect to the quadric corresponding to the boundary

of hyperbolic space. Can these truncated polytopes be used to understand the analytic

continuation to other signatures? More generally, it would be interesting to initiate a

study of simplicial volumes in signatures beyond the spherical and hyperbolic cases, as we

are unaware of this being systematically studied. It could also be instructive to better

understand why the expression for the all-mass box given in (4.21) works in all signatures.

The all-mass box integral famously involves a square root, and this feature is gener-

ically shared by the higher-point integrals we have considered. Is it possible to find a

(2n−1)-dimensional simplex whose dihedral angles are all rational (in the sense that their

trigonometric functions are all rational), and such that the same conditions are satisfied

recursively for all (2n−3)-dimensional faces? If these simplices exist, do they form a (po-

tentially infinite) discrete set, or a continuous family depending on several variables? Does

this set have some density properties? Notably, there are known examples of orthoschemes

with essential angles π
p for various integers p, which it turns out come in correspondence

with Coxeter diagrams (see [70]).

In section 4.5, we have highlighted the existence of an additional Regge symmetry re-

spected by hyperbolic tetrahedra, and consequently by the all-mass box in this signature.

It would be interesting to investigate whether this symmetry encodes known — or currently

unknown — physical principles. In this vein, it is worth mentioning that the tetrahedron

integral also has fascinating connections to Turaev-Viro invariants, R-matrices, and in-

tegrability. For instance, there has been recent work on computing these integrals using

Yangian symmetry [29].

With the help of the Schläfli formula, we have additionally presented an explicit formula

for the symbols of these integrals for all n. Similar results for the symbols of one-loop

integrals can be found in [15, 22, 27, 34]; in particular, direct analogues of equations (6.3)

and (6.4) can be found in [34], although it is interesting to note that the formulas found

there were derived from a different point of view, using the diagrammatic coaction of

Feynman integrals. The symbol is a useful tool for studying the discontinuity structure

of these integrals, and can be used to bootstrap integrals and amplitudes even at high

transcendental weights (see for example [71]). In some cases, similar techniques can also

be applied to higher-loop integrals to derive their symbol, as shown in [28].

It would in particular be valuable to understand the interplay between the simplicial

geometry encoding these symbols and the Steinmann relations. It is possible that some kind
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of geometric principle is at work here similar to the ‘cluster adjacency’ principle that has

been observed in planar maximally supersymmetric Yang-Mills theory [72–76], where an

extended version of the Steinmann relations have been observed to hold [69, 77]. It would

also be interesting to see if the recent discussion in [78] can be extended to the integrals

we studied in this paper. More generally, while we have carried out the beginnings of an

analysis of the analytic structure of these integrals, a more in-depth study is called for.

In this paper, we have focused entirely in individual Feynman integrals rather than

full amplitudes. However, in [6] it was shown that one-loop MHV amplitudes in N = 4

supersymmetric Yang-Mills theory are given by the volume of three-dimensional polytopes

in H5 with no boundary. In particular, this was demonstrated in the case where all of the

propagators have the same mass (or in AdS language, when all four vertices lie on the same

horosphere through the infinity twistor [10]). It would be interesting to explore whether

this observation could be extended to the case of unequal masses.

Finally, while the connection between Feynman integrals and simplicial volumes breaks

down beyond one loop, the integration contours appearing in higher-loop integrals have in

many cases been observed to correspond to higher-dimensional Calabi-Yau manifolds [79–

87]. Thus, a more general geometric formulation of Feynman integrals may exists at higher

loop orders that could be leveraged to compute these integrals efficiently. Such an inter-

pretation would be especially interesting for integrals that appear in scattering amplitudes

at all particle multiplicities, such as those found in [88, 89].
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A Short introduction to the embedding formalism

The conformality of In(G) discussed here is most easily seen in the embedding formalism

for inverse propagators. This formalism appears to be used more often than it is explained

(see [90–93] for early references, and e.g. [10, 94–97] for more recent presentations and

applications). As such, it is worthwhile to provide a reference for its most important

ingredients here.

For each external dual-momentum point xµi and the internal mass mi associated with

the propagator bounding the region it corresponds to (see figure 1), we associate a higher-
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dimensional vector

(xµi ,mi) 7→ XM
i :=

 xµi
x2i +m2

i

1

∈ Pn+1. (A.1)

Similarly, to each loop momentum we associate

XM
` :=

x
µ
`

x2`
1

∈ Pn+1 . (A.2)

On the space of Xi’s we define an inner product using space-time xµi ’s metric ηµν accord-

ing to

(i|j) := Xi ·Xj := hMNX
M
i XN

j with hMN :=

−2ηµν 0 0
0 0 1
0 1 0

 . (A.3)

Using this metric, it is easy to see that

(i|j) = x2ij +m2
i +m2

j , (̀ |i) = x2` i +m2
i . (A.4)

Thus, the propagators appearing in the original integral (1.2) are now rendered linear in

this embedding space. The integration measure over x` changes slightly to reflect the

embedding map (A.1), resulting in

I0n = 2

∫ [
dn+1X`

]
δ
(
(̀ | )̀

) 1

(̀ |1)(̀ |2)(̀ |3) · · · (̀ |n)
, (A.5)

where we have used the notation introduced in (1.5).

Because every factor in the denominator of (A.5) is linear in X`, it is easy to see

that there should be two leading singularities as claimed above — the duplication arising

from the quadratic constraint δ
(
(̀ | )̀

)
on the final degree of freedom. Moreover, it makes

it much easier to Feynman parameterize. As every factor is linear, introducing Feynman

parameters is as easy as adding them linearly into

|Y ) :=
∑
i

αi|X)i , (A.6)

in terms of which we have

I0n = 2Γ(n)

∫ ∞
0

[
dn−1~α

] ∫ [
dn+1X`

] δ((̀ | )̀)
(̀ |Y )n

= πn/2Γ(n/2)

∫ ∞
0

[
dn−1~α

] 1[
1
2(Y |Y )

]n
2

. (A.7)

In this form, the conformal symmetry discussed above is made manifest. Namely, if the

space-time signature for ηµν is (p, q), then the embedding space metric hMN has signature

(p + 1, q + 1); from this, it is easy to see that In enjoys an SO(p + 1, q + 1) symmetry —

the conformal group of Rp,q.

Open Access. This article is distributed under the terms of the Creative Commons
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