55 research outputs found

    Biophysical Evaluation of Rhesus Macaque Fc Gamma Receptors Reveals Similar IgG Fc Glycoform Preferences to Human Receptors

    Get PDF
    Rhesus macaques are a common non-human primate model used in the evaluation of human monoclonal antibodies, molecules whose effector functions depend on a conserved N-linked glycan in the Fc region. This carbohydrate is a target of glycoengineering efforts aimed at altering antibody effector function by modulating the affinity of Fcγ receptors. For example, a reduction in the overall core fucose content is one such strategy that can increase antibody-mediated cellular cytotoxicity by increasing Fc-FcγRIIIa affinity. While the position of the Fc glycan is conserved in macaques, differences in the frequency of glycoforms and the use of an alternate monosaccharide in sialylated glycan species add a degree of uncertainty to the testing of glycoengineered human antibodies in rhesus macaques. Using a panel of 16 human IgG1 glycovariants, we measured the affinities of macaque FcγRs for differing glycoforms via surface plasmon resonance. Our results suggest that macaques are a tractable species in which to test the effects of antibody glycoengineering

    Explanatory pluralism in the medical sciences: theory and practice

    Get PDF
    Explanatory pluralism is the view that the best form and level of explanation depends on the kind of question one seeks to answer by the explanation, and that in order to answer all questions in the best way possible, we need more than one form and level of explanation. In the first part of this article, we argue that explanatory pluralism holds for the medical sciences, at least in theory. However, in the second part of the article we show that medical research and practice is actually not fully and truly explanatory pluralist yet. Although the literature demonstrates a slowly growing interest in non-reductive explanations in medicine, the dominant approach in medicine is still methodologically reductionist. This implies that non-reductive explanations often do not get the attention they deserve. We argue that the field of medicine could benefit greatly by reconsidering its reductive tendencies and becoming fully and truly explanatory pluralist. Nonetheless, trying to achieve the right balance in the search for and application of reductive and non-reductive explanations will in any case be a difficult exercise

    Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1

    Get PDF
    To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols

    Novel Concepts of Altered Immunoglobulin G Galactosylation in Autoimmune Diseases

    No full text
    The composition of the conserved N297 glycan in immunoglobulin G (IgG) has been shown to affect antibody effector functions via C1q of the complement system and Fc gamma receptors (FcγR) on immune cells. Changes in the general levels of IgG-glycoforms, such as lowered total IgG galactosylation observed in many autoimmune diseases have been associated with elevated disease severity. Agalactosyslated IgG has therefore been regarded and classified by many as pro-inflammatory. However, and somewhat counterintuitively, agalactosylation has been shown by several groups to decrease affinity for FcγRIII and decrease C1q binding and downstream activation, which seems at odds with this proposed pro-inflammatory nature. In this review, we discuss these circumstances where altered IgG galactosylation/glycosylation is found. We propose a novel model based on these observations and current biochemical evidence, where the levels of IgG galactosylation found in the total bulk IgG affect the threshold required to achieve immune activation by autoantibodies through either C1q or FcγR. Although this model needs experimental verification, it is supported by several clinical observations and reconciles apparent discrepancies in the literature, and suggests a general mechanism in IgG-mediated autoimmune diseases

    IgG subclasses and allotypes: from structure to effector functions

    No full text
    Of the five immunoglobulin isotypes, immunoglobulin G (IgG) is most abundant in human serum. The four subclasses, IgG1, IgG2, IgG3, and IgG4, which are highly conserved, differ in their constant region, particularly in their hinges and upper CH2 domains. These regions are involved in binding to both IgG-Fc receptors (Fc gamma R) and C1g. As a result, the different subclasses have different effector functions, both in terms of triggering Fc gamma R-expressing cells, resulting in phagocytosis or antibody-dependent cell-mediated cytotoxicity, and activating complement. The Fc-regions also contain a binding epitope for the neonatal Fc receptor (FcRn), responsible for the extended half-life, placental transport, and bidirectional transport of IgG to mucosal surfaces. However, FcRn is also expressed in myeloid cells, where it participates in both phagocytosis and antigen presentation together with classical Fc gamma R and complement. How these properties, IgG-polymorphisms and post-translational modification of the antibodies in the form of glycosylation, affect IgG-function will be the focus of the current revie

    Novel concepts of altered immunoglobulin G galactosylation in autoimmune diseases

    No full text
    The composition of the conserved N297 glycan in immunoglobulin G (IgG) has been shown to affect antibody effector functions via C1q of the complement system and Fc gamma receptors (FcγR) on immune cells. Changes in the general levels of IgG-glycoforms, such as lowered total IgG galactosylation observed in many autoimmune diseases have been associated with elevated disease severity. Agalactosyslated IgG has therefore been regarded and classified by many as pro-inflammatory. However, and somewhat counterintuitively, agalactosylation has been shown by several groups to decrease affinity for FcγRIII and decrease C1q binding and downstream activation, which seems at odds with this proposed pro-inflammatory nature. In this review, we discuss these circumstances where altered IgG galactosylation/glycosylation is found. We propose a novel model based on these observations and current biochemical evidence, where the levels of IgG galactosylation found in the total bulk IgG affect the threshold required to achieve immune activation by autoantibodies through either C1q or FcγR. Although this model needs experimental verification, it is supported by several clinical observations and reconciles apparent discrepancies in the literature, and suggests a general mechanism in IgG-mediated autoimmune diseases

    Affinity of human IgG subclasses to mouse Fc gamma receptors

    No full text
    Human IgG is the main antibody class used in antibody therapies because of its efficacy and longer half-life, which are completely or partly due to Fc gamma R-mediated functions of the molecules. Preclinical testing in mouse models are frequently performed using human IgG, but no detailed information on binding of human IgG to mouse Fc gamma Rs is available. The orthologous mouse and human Fc gamma Rs share roughly 60-70% identity, suggesting some incompatibility. Here, we report binding affinities of all mouse and human IgG subclasses to mouse Fc gamma R. Human IgGs bound to mouse Fc gamma R with remarkably similar binding strengths as we know from binding to human ortholog receptors, with relative affinities IgG3 > IgG1 > IgG4 > IgG2 and Fc gamma RI >> Fc gamma RIV > Fc gamma RIII > Fc gamma RIIb. This suggests human IgG subclasses to have similar relative FcR-mediated biological activities in mic

    Multi-level glyco-engineering techniques to generate IgG with defined Fc-glycans

    No full text
    Immunoglobulin G (IgG) mediates its immune functions through complement and cellular IgG-Fc receptors (Fc gamma R). IgG contains an evolutionary conserved N-linked glycan at position Asn297 in the Fc-domain. This glycan consists of variable levels of fucose, galactose, sialic acid, and bisecting N-acetylglucosamine (bisection). Of these variations, the lack of fucose strongly enhances binding to the human Fc gamma RIII, a finding which is currently used to improve the efficacy of therapeutic monoclonal antibodies. The influence of the other glycan traits is largely unknown, mostly due to lack of glyco-engineering tools. We describe general methods to produce recombinant proteins of any desired glycoform in eukaryotic cells. Decoy substrates were used to decrease the level of fucosylation or galactosylation, glycosyltransferases were transiently overexpressed to enhance bisection, galactosylation and sialylation and in vitro sialylation was applied for enhanced sialylation. Combination of these techniques enable to systematically explore the biological effect of these glycosylation traits for IgG and other glycoprotein
    corecore