48 research outputs found

    A retrospective study of anthrax on the Ghaap Plateau, Northern Cape province of South Africa, with special reference to the 2007–2008 outbreaks

    Get PDF
    Anthrax is a zoonotic disease caused by the gram-positive, endospore-forming and soil-borne bacterium Bacillus anthracis. When in spore form, the organism can survive in dormancy in the environment for decades. It is a controlled disease of livestock and wild ungulates in South Africa. In South Africa, the two enzootic regions are the Kruger National Park and the Ghaap Plateau in the Northern Cape province. Farms on the Plateau span thousands of hectares comprising of wildlife – livestock mixed use farming. In 2007–2008, anthrax outbreaks in the province led to government officials intervening to aid farmers with control measures aimed at preventing further losses. Because of the ability of the organism to persist in the environment for prolonged periods, an environmental risk or isolation survey was carried out in 2012 to determine the efficacy of control measures employed during the 2007–2008, anthrax outbreaks. No B. anthracis could be isolated from the old carcass sites, even when bone fragments from the carcasses were still clearly evident. This is an indication that the control measures and protocols were apparently successful in stemming the continuity of spore deposits at previously positive carcass sites.The National Research Foundation (NRF)http://www.ojvr.org/am2018Veterinary Tropical Disease

    Isolation and identification of cobalt- and caesium-resistant bacteria from a nuclear fuel storage pond

    Get PDF
    One of the issues facing the nuclear power industry is how to store spent nuclear fuel which is contaminated with radionuclides produced during nuclear fission, including caesium ((134)Cs(+), (135)Cs(+) and (137)Cs(+)) and cobalt ((60)Co(2+)). In this study, we have isolated Co(2+)- and Cs(+)-resistant bacteria from water collected from a nuclear fuel storage pond. The most resistant Cs(+) and Co(2+) isolates grew in the presence of 500 mM CsCl and 3 mM CoCl2. Strain Cs67-2 is resistant to fourfold more Cs(+) than Cupriavidus metallidurans str. CH34 making it the most Cs(+)-resistant strain identified to date. The Cs(+)-resistant isolates were closely related to bacteria in the Serratia and Yersinia genera, while the Co(2+)-resistant isolates were closely related to the Curvibacter and Tardiphaga genera. These new isolates could be used for bioremediation

    The fitness of African malaria vectors in the presence and limitation of host behaviour

    Get PDF
    <p>Background Host responses are important sources of selection upon the host species range of ectoparasites and phytophagous insects. However little is known about the role of host responses in defining the host species range of malaria vectors. This study aimed to estimate the relative importance of host behaviour to the feeding success and fitness of African malaria vectors, and assess its ability to predict their known host species preferences in nature.</p> <p>Methods Paired evaluations of the feeding success and fitness of African vectors Anopheles arabiensis and Anopheles gambiae s.s in the presence and limitation of host behaviour were conducted in a semi-field system (SFS) at Ifakara Health Institute, Tanzania. In one set of trials, mosquitoes were released within the SFS and allowed to forage overnight on a host that was free to exhibit natural behaviour in response to insect biting. In the other, mosquitoes were allowed to feed directly on from the skin surface of immobile hosts. The feeding success and subsequent fitness of vectors under these conditions were investigated on 6 host types (humans, calves, chickens, cows, dogs and goats) to assess whether physical movements of preferred host species (cattle for An. arabiensis, humans for An. gambiae s.s.) were less effective at preventing mosquito bites than those of common alternatives.</p> <p>Results Anopheles arabiensis generally had greater feeding success when applied directly to host skin than when foraging on unrestricted hosts (in five of six host species). However, An. gambiae s.s obtained blood meals from free and restrained hosts with similar success from most host types (four out of six). Overall, the blood meal size, oviposition rate, fecundity and post-feeding survival of mosquito vectors were significantly higher after feeding on hosts free to exhibit behaviour, than those who were immobilized during feeding trials.</p> <p>Conclusions Allowing hosts to move freely during exposure to mosquitoes was associated with moderate reductions in mosquito feeding success, but no detrimental impact to the subsequent fitness of mosquitoes that were able to feed upon them. This suggests that physical defensive behaviours exhibited by common host species including humans do not impose substantial fitness costs on African malaria vectors.</p&gt

    Immunological evidence of variation in exposure and immune response to Bacillus anthracis in herbivores of Kruger and Etosha national parks

    Get PDF
    Exposure and immunity to generalist pathogens differ among host species and vary across spatial scales. Anthrax, caused by a multi-host bacterial pathogen, Bacillus anthracis, is enzootic in Kruger National Park (KNP), South Africa and Etosha National Park (ENP), Namibia. These parks share many of the same potential host species, yet the main anthrax host in one (greater kudu (Tragelaphus strepsiceros) in KNP and plains zebra (Equus quagga) in ENP) is only a minor host in the other. We investigated species and spatial patterns in anthrax mortalities, B. anthracis exposure, and the ability to neutralize the anthrax lethal toxin to determine if observed host mortality differences between locations could be attributed to population-level variation in pathogen exposure and/or immune response. Using serum collected from zebra and kudu in high and low incidence areas of each park (18- 20 samples/species/area), we estimated pathogen exposure from anti-protective antigen (PA) antibody response using enzyme-linked immunosorbent assay (ELISA) and lethal toxin neutralization with a toxin neutralization assay (TNA). Serological evidence of pathogen exposure followed mortality patterns within each system (kudus: 95% positive in KNP versus 40% in ENP; zebras: 83% positive in ENP versus 63% in KNP). Animals in the high-incidence area of KNP had higher anti-PA responses than those in the low-incidence area, but there were no significant differences in exposure by area within ENP. Toxin neutralizing ability was higher for host populations with lower exposure prevalence, i.e., higher in ENP kudus and KNP zebras than their conspecifics in the other park. These results indicate that host species differ in their exposure to and adaptive immunity against B. anthracis in the two parks. These patterns may be due to environmental differences such as vegetation, rainfall patterns, landscape or forage availability between these systems and their interplay with host behavior (foraging or other risky behaviors), resulting in differences in exposure frequency and dose, and hence immune response.NSF Division of Environmental Biology.https://www.frontiersin.org/journals/immunologydm2022Veterinary Tropical Disease

    Environmental drivers of biseasonal anthrax outbreak dynamics in two multihost savanna systems

    Get PDF
    Environmental factors are common forces driving infectious disease dynamics. We compared interannual and seasonal patterns of anthrax infections in two multihost systems in southern Africa: Etosha National Park, Namibia, and Kruger National Park, South Africa. Using several decades of mortality data from each system, we assessed possible transmission mechanisms behind anthrax dynamics, examining (1) within- and between-species temporal case correlations and (2) associations between anthrax mortalities and environmental factors, specifically rainfall and the Normalized Difference Vegetation Index (NDVI), with empirical dynamic modeling. Anthrax cases in Kruger had wide interannual variation in case numbers, and large outbreaks seemed to follow a roughly decadal cycle. In contrast, outbreaks in Etosha were smaller in magnitude and occurred annually. In Etosha, the host species commonly affected remained consistent over several decades, although plains zebra (Equus quagga) became relatively more dominant. In Kruger, turnover of the main host species occurred after the 1990s, where the previously dominant host species, greater kudu (Tragelaphus strepsiceros), was replaced by impala (Aepyceros melampus). In both parks, anthrax infections showed two seasonal peaks, with each species having only one peak in a year. Zebra, springbok (Antidorcas marsupialis), wildebeest (Connochaetes taurinus), and impala cases peaked in wet seasons, while elephant (Loxodonta africana), kudu, and buffalo (Syncerus caffer) cases peaked in dry seasons. For common host species shared between the two parks, anthrax mortalities peaked in the same season in both systems. Among host species with cases peaking in the same season, anthrax mortalities were mostly synchronized, which implies similar transmission mechanisms or shared sources of exposure. Between seasons, outbreaks in one species may contribute to more cases in another species in the following season. Higher vegetation greenness was associated with more zebra and springbok anthrax mortalities in Etosha but fewer elephant cases in Kruger. These results suggest that host behavioral responses to changing environmental conditions may affect anthrax transmission risk, with differences in transmission mechanisms leading to multihost biseasonal outbreaks. This study reveals the dynamics and potential environmental drivers of anthrax in two savanna systems, providing a better understanding of factors driving biseasonal dynamics and outbreak variation among locations.The National Science Foundation of South Africa.https://onlinelibrary.wiley.com/r/ecmam2023Veterinary Tropical Disease

    Interleukin-1 Receptor-Associated Kinase-3 Is a Key Inhibitor of Inflammation in Obesity and Metabolic Syndrome

    Get PDF
    BACKGROUND: Visceral obesity is associated with the rising incidence of type 2 diabetes and metabolic syndrome. Low-grade chronic inflammation and oxidative stress synergize in obesity and obesity-induced disorders. OBJECTIVE: We searched a cluster of molecules that support interactions between these stress conditions in monocytes. METHODS: RNA expressions in blood monocytes of two independent cohorts comprising 21 and 102 obese persons and 46 age-matched controls were determined by microarray and independently validated by quantitative RT-PCR analysis. The effect of three-month weight loss after bariatric surgery was determined. The effect of RNA silencing on inflammation and oxidative stress was studied in human monocytic THP-1 cells. RESULTS: Interleukin-1 receptor-associated kinase-3 (IRAK3), key inhibitor of IRAK/NFΞΊB-mediated chronic inflammation, is downregulated in monocytes of obese persons. Low IRAK3 was associated with high superoxide dismutase-2 (SOD2), a marker of mitochondrial oxidative stress. A comparable expression profile was also detected in visceral adipose tissue of the same obese subjects. Low IRAK3 and high SOD2 was associated with a high prevalence of metabolic syndrome (odds ratio: 9.3; sensitivity: 91%; specificity: 77%). By comparison, the odds ratio of high-sensitivity C-reactive protein, a widely used marker of systemic inflammation, was 4.3 (sensitivity: 69%; specificity: 66%). Weight loss was associated with an increase in IRAK3 and a decrease in SOD2, in association with a lowering of systemic inflammation and a decreasing number of metabolic syndrome components. We identified the increase in reactive oxygen species in combination with obesity-associated low adiponectin and high glucose and interleukin-6 as cause of the decrease in IRAK3 in THP-1 cells in vitro. CONCLUSION: IRAK3 is a key inhibitor of inflammation in association with obesity and metabolic syndrome. Our data warrant further evaluation of IRAK3 as a diagnostic and prognostic marker, and as a target for intervention

    Validation of Coevolving Residue Algorithms via Pipeline Sensitivity Analysis: ELSC and OMES and ZNMI, Oh My!

    Get PDF
    Correlated amino acid substitution algorithms attempt to discover groups of residues that co-fluctuate due to either structural or functional constraints. Although these algorithms could inform both ab initio protein folding calculations and evolutionary studies, their utility for these purposes has been hindered by a lack of confidence in their predictions due to hard to control sources of error. To complicate matters further, naive users are confronted with a multitude of methods to choose from, in addition to the mechanics of assembling and pruning a dataset. We first introduce a new pair scoring method, called ZNMI (Z-scored-product Normalized Mutual Information), which drastically improves the performance of mutual information for co-fluctuating residue prediction. Second and more important, we recast the process of finding coevolving residues in proteins as a data-processing pipeline inspired by the medical imaging literature. We construct an ensemble of alignment partitions that can be used in a cross-validation scheme to assess the effects of choices made during the procedure on the resulting predictions. This pipeline sensitivity study gives a measure of reproducibility (how similar are the predictions given perturbations to the pipeline?) and accuracy (are residue pairs with large couplings on average close in tertiary structure?). We choose a handful of published methods, along with ZNMI, and compare their reproducibility and accuracy on three diverse protein families. We find that (i) of the algorithms tested, while none appear to be both highly reproducible and accurate, ZNMI is one of the most accurate by far and (ii) while users should be wary of predictions drawn from a single alignment, considering an ensemble of sub-alignments can help to determine both highly accurate and reproducible couplings. Our cross-validation approach should be of interest both to developers and end users of algorithms that try to detect correlated amino acid substitutions

    CITED2 and NCOR2 in anti-oestrogen resistance and progression of breast cancer

    Get PDF
    Background:Endocrine therapies of breast cancer are effective but ultimately fail because of the development of treatment resistance. We have previously revealed several genes leading to tamoxifen resistance in vitro by retroviral insertion mutagenesis. To understand the manner in which these genes yield tamoxifen resistance, their effects on global gene expression were studied and those genes resulting in a distinct gene expression profile were further investigated for their clinical relevance.Methods:Gene expression profiles of 69 human breast cancer cell lines that were made tamoxifen resistant through retroviral insertion mutagenesis were obtained using oligonucleotide arrays and analysed with bioinformatic tools. mRNA levels of NCOR2 and CITED2 in oestrogen receptor-positive breast tumours were determined by quantitative RT-PCR. mRNA levels were evaluated for association with metastasis-free survival (MFS) in 620 patients with lymph node-negative primary breast cancer who did not receive systemic adjuvant therapy, and with clinical benefit in 296 patients receiving tamoxifen therapy for recurrent breast cancer.Results:mRNA expression profiles of most tamoxifen-resistant cell lines were strikingly similar, except for the subgroups of cell lines in which NCOR2 or CITED2 were targeted by the retrovirus. Both NCOR2 and CITED2 mRNA levels were associated with MFS, that is, tumour aggressiveness, independently of traditional prognostic factors. In addition, high CITED2 mRNA levels were predictive for a clinical benefit from first-line tamoxifen treatment in patients with advanced disease.Conclusions: Most retrovirally targeted genes yielding tamoxifen resistance in our cell lines do not impose a distinctive expressi

    The Contribution of Coevolving Residues to the Stability of KDO8P Synthase

    Get PDF
    The evolutionary tree of 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase (KDO8PS), a bacterial enzyme that catalyzes a key step in the biosynthesis of bacterial endotoxin, is evenly divided between metal and non-metal forms, both having similar structures, but diverging in various degrees in amino acid sequence. Mutagenesis, crystallographic and computational studies have established that only a few residues determine whether or not KDO8PS requires a metal for function. The remaining divergence in the amino acid sequence of KDO8PSs is apparently unrelated to the underlying catalytic mechanism.The multiple alignment of all known KDO8PS sequences reveals that several residue pairs coevolved, an indication of their possible linkage to a structural constraint. In this study we investigated by computational means the contribution of coevolving residues to the stability of KDO8PS. We found that about 1/4 of all strongly coevolving pairs probably originated from cycles of mutation (decreasing stability) and suppression (restoring it), while the remaining pairs are best explained by a succession of neutral or nearly neutral covarions.Both sequence conservation and coevolution are involved in the preservation of the core structure of KDO8PS, but the contribution of coevolving residues is, in proportion, smaller. This is because small stability gains or losses associated with selection of certain residues in some regions of the stability landscape of KDO8PS are easily offset by a large number of possible changes in other regions. While this effect increases the tolerance of KDO8PS to deleterious mutations, it also decreases the probability that specific pairs of residues could have a strong contribution to the thermodynamic stability of the protein
    corecore