140 research outputs found

    Human prostate supports more efficient replication of HIV-1 R5 than X4 strains ex vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to determine whether human prostate can be productively infected by HIV-1 strains with different tropism, and thus represent a potential source of HIV in semen, an organotypic culture of prostate from men undergoing prostatic adenomectomy for benign prostate hypertrophy (BPH) was developed. The presence of potential HIV target cells in prostate tissues was investigated using immunohistochemistry. The infection of prostate explants following exposures with HIV-1 R5, R5X4 and X4 strains was analyzed through the measure of RT activity in culture supernatants, the quantification of HIV DNA in the explants and the detection of HIV RNA+ cells <it>in situ</it>.</p> <p>Results</p> <p>The overall prostate characteristics were retained for 2<sup>1/2 </sup>weeks in culture. Numerous potential HIV-1 target cells were detected in the prostate stroma. Whilst HIV-1 R5<sub>SF162 </sub>strain consistently productively infected prostatic T lymphocytes and macrophages, the prototypic X4<sub>IIIB </sub>strain and a primary R5X4 strain showed less efficient replication in this organ.</p> <p>Conclusion</p> <p>The BPH prostate is a site of HIV-1 R5 replication that could contribute virus to semen. A limited spreading of HIV-1 X4 and R5X4 in this organ could participate to the preferential sexual transmission of HIV-1 R5 strains.</p

    Impact of Short-Term HAART Initiated during the Chronic Stage or Shortly Post-Exposure on SIV Infection of Male Genital Organs

    Get PDF
    International audienceBACKGROUND: The male genital tract is suspected to constitute a viral sanctuary as persistent HIV shedding is found in the semen of a subset of HIV-infected men receiving effective antiretroviral therapy (HAART). The origin of this persistent shedding is currently unknown. Phylogenetic studies indicated that HIV in semen from untreated men arises from local sources and/or passive diffusion from the blood. We previously demonstrated in human and macaque low levels and localized infection of several semen-producing organs by HIV/SIV. Using a macaque model, this study investigates the impact of short term HAART (2-4 weeks) initiated either during the asymptomatic chronic stage or 4 h post-intravenous inoculation of SIVmac251 on the infection of male genital organs. METHODOLOGY/PRINCIPAL FINDINGS: Short term HAART during the chronic stage decreased blood viral load. No major impact of HAART was observed on SIV DNA levels in male genital organs using a sensitive nested PCR assay. Using in situ hybridization, SIV RNA+ cells were detected in all male genital tract organs from untreated and treated animals with undetectable blood viral load following HAART. Infected CD68+ myeloid cells and CD3+ T lymphocytes were detected pre- and post-HAART. In contrast, short term HAART initiated 4 h post-SIV exposure led to a drastic decrease of the male genital tissues infection, although it failed to prevent systemic infection. In both cases, HAART tended to decrease the number of CD3+ T cells in the male organs. CONCLUSIONS: Our results indicate that the established infection of male genital organs is not greatly impacted by short term HAART, whereas the same treatment during pre-acute phase of the infection efficiently impairs viral dissemination to the male genital tract. Further investigations are now needed to determine whether infection of male genital organs is responsible for long term persistent HIV shedding in semen despite HAART

    Semen-mediated enhancement of HIV infection is donor-dependent and correlates with the levels of SEVI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 is usually transmitted in the presence of semen. We have shown that semen boosts HIV-1 infection and contains fragments of prostatic acid phosphatase (PAP) forming amyloid aggregates termed SEVI (semen-derived enhancer of viral infection) that promote virion attachment to target cells. Despite its importance for the global spread of HIV-1, however, the effect of semen on virus infection is controversial.</p> <p>Results</p> <p>Here, we established methods allowing the meaningful analysis of semen by minimizing its cytotoxic effects and partly recapitulating the conditions encountered during sexual HIV-1 transmission. We show that semen rapidly and effectively enhances the infectivity of HIV-1, HIV-2, and SIV. This enhancement occurs independently of the viral genotype and coreceptor tropism as well as the virus producer and target cell type. Semen-mediated enhancement of HIV-1 infection was also observed under acidic pH conditions and in the presence of vaginal fluid. We further show that the potency of semen in boosting HIV-1 infection is donor dependent and correlates with the levels of SEVI.</p> <p>Conclusions</p> <p>Our results show that semen strongly enhances the infectivity of HIV-1 and other primate lentiviruses and that SEVI contributes to this effect. Thus, SEVI may play an important role in the sexual transmission of HIV-1 and addition of SEVI inhibitors to microbicides may improve their efficacy.</p

    Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection

    Get PDF
    International audienceTwo of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathway

    Semen CD4+ T cells and macrophages are productively infected at all stages of SIV infection in macaques.

    Get PDF
    International audienceThe mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4(+) T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4(+) T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure

    Infection of Semen-Producing Organs by SIV during the Acute and Chronic Stages of the Disease

    Get PDF
    International audienceBACKGROUND: Although indirect evidence suggests the male genital tract as a possible source of persistent HIV shedding in semen during antiretroviral therapy, this phenomenon is poorly understood due to the difficulty of sampling semen-producing organs in HIV+ asymptomatic individuals. METHODOLOGY/PRINCIPAL FINDINGS: Using a range of molecular and cell biological techniques, this study investigates SIV infection within reproductive organs of macaques during the acute and chronic stages of the disease. We demonstrate for the first time the presence of SIV in the testes, epididymides, prostate and seminal vesicles as early as 14 days post-inoculation. This infection persists throughout the chronic stage and positively correlates with blood viremia. The prostate and seminal vesicles appear to be the most efficiently infected reproductive organs, followed by the epididymides and testes. Within the male genital tract, mostly T lymphocytes and a small number of germ cells harbour SIV antigens and RNA. In contrast to the other organs studied, the testis does not display an immune response to the infection. Testosteronemia is transiently increased during the early phase of the infection but spermatogenesis remains unaffected. CONCLUSIONS/SIGNIFICANCE: The present study reveals that SIV infection of the macaque male genital tract is an early event and that semen-producing organs display differential infection levels and immune responses. These results help elucidate the origin of HIV in semen and constitute an essential base to improving the design of antiretroviral therapies to eradicate virus from semen

    Zika virus infection of the human male genital tract

    No full text
    International audienc

    Is SARS-CoV-2-induced testicular damage in hamsters relevant?

    No full text
    International audienceThe extent, duration and causes of alterations in the testes caused by SARS-CoV-2 are unclear. A new study has documented the effects of SARS-CoV-2 infection on the testes of a golden Syrian hamster model; however, the relevance of these findings to non-severe human infection is questionable

    Viral persistence in the male genital tract: a tale of two viruses

    No full text
    International audienc
    • …
    corecore