171 research outputs found

    Do I Belong? Underrepresented Students Sense of Belonging

    Get PDF
    Increasing literature suggests that lower levels of sense of belonging among underrepresented college students could be a contributing factor to their comparatively lower rates of persistence and retention than those of their non-underrepresented peers. This project explores the barriers underrepresented students face during their first year of college and the opportunities colleges and universities have to increase diverse efforts to foster positive perspectives of sense of belonging among underrepresented students. An effective program must acknowledge the differing needs of students at various points in their college career and must diversify beyond a traditional framework that caters to the needs of students from non-underrepresented backgrounds. A professional development series for academic advisors at the City College of New York will address the barriers, challenges, and adversities underrepresented students face and present opportunities for academic advisors across the institution to engage with and become educated on the varying needs of underrepresented students. Together summative and formative components of evaluation will be employed to measure the efficacy of the program and areas of improvement

    Responses to Pheromones in a Complex Odor World: Sensory Processing and Behavior

    Get PDF
    Insects communicating with pheromones, be it sex- or aggregation pheromones, are confronted with an olfactory environment rich in a diversity of volatile organic compounds of which plants are the main releaser. Certain of these volatiles can represent behaviorally relevant information, such as indications about host- or non-host plants; others will provide essentially a rich odor background out of which the behaviorally relevant information needs to be extracted. In an attempt to disentangle mechanisms of pheromone communication in a rich olfactory environment, which might underlie interactions between intraspecific signals and a background, we will summarize recent literature on pheromone/plant volatile interactions. Starting from molecular mechanisms, describing the peripheral detection and central nervous integration of pheromone-plant volatile mixtures, we will end with behavioral output in response to such mixtures and its plasticity

    Understanding the Logics of Pheromone Processing in the Honeybee Brain: From Labeled-Lines to Across-Fiber Patterns

    Get PDF
    Honeybees employ a very rich repertoire of pheromones to ensure intraspecific communication in a wide range of behavioral contexts. This communication can be complex, since the same compounds can have a variety of physiological and behavioral effects depending on the receiver. Honeybees constitute an ideal model to study the neurobiological basis of pheromonal processing, as they are already one of the most influential animal models for the study of general odor processing and learning at behavioral, cellular and molecular levels. Accordingly, the anatomy of the bee brain is well characterized and electro- and opto-physiological recording techniques at different stages of the olfactory circuit are possible in the laboratory. Here we review pheromone communication in honeybees and analyze the different stages of olfactory processing in the honeybee brain, focusing on available data on pheromone detection, processing and representation at these different stages. In particular, we argue that the traditional distinction between labeled-line and across-fiber pattern processing, attributed to pheromone and general odors respectively, may not be so clear in the case of honeybees, especially for social-pheromones. We propose new research avenues for stimulating future work in this area

    Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera)

    Get PDF
    When smelling an odorant mixture, olfactory systems can be analytical (i.e. extract information about the mixture elements) or synthetic (i.e. creating a configural percept of the mixture). Here, we studied elemental and configural mixture coding in olfactory neurons of the honeybee antennal lobe, local neurons in particular. We conducted intracellular recordings and stimulated with monomolecular odorants and their coherent or incoherent binary mixtures to reproduce a temporally dynamic environment. We found that about half of the neurons responded as ‘elemental neurons’, i.e. responses evoked by mixtures reflected the underlying feature information from one of the components. The other half responded as ‘configural neurons’, i.e. responses to mixtures were clearly different from responses to their single components. Elemental neurons divided in late responders (above 60 ms) and early responder neurons (below 60 ms), whereas responses of configural coding neurons concentrated in-between these divisions. Latencies of neurons with configural responses express a tendency to be faster for coherent stimuli which implies employment in different processing circuits

    Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect

    Get PDF
    Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes

    Data-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation

    Get PDF
    Insects have a remarkable ability to identify and track odour sources in multi-odour backgrounds. Recent behavioural experiments show that this ability relies on detecting millisecond stimulus asynchronies between odourants that originate from different sources. Honeybees, Apis mellifera , are able to distinguish mixtures where both odourants arrive at the same time (synchronous mixtures) from those where odourant onsets are staggered (asynchronous mixtures) down to an onset delay of only 6 ms. In this paper we explore this surprising ability in a model of the insects' primary olfactory brain area, the antennal lobe. We hypothesize that a winner-take-all inhibitory network of local neurons in the antennal lobe has a symmetry-breaking effect, such that the response pattern in projection neurons to an asynchronous mixture is different from the response pattern to the corresponding synchronous mixture for an extended period of time beyond the initial odourant onset where the two mixture conditions actually differ. The prolonged difference between response patterns to synchronous and asynchronous mixtures could facilitate odour segregation in downstream circuits of the olfactory pathway. We present a detailed data-driven model of the bee antennal lobe that reproduces a large data set of experimentally observed physiological odour responses, successfully implements the hypothesised symmetry-breaking mechanism and so demonstrates that this mechanism is consistent with our current knowledge of the olfactory circuits in the bee brain

    Prediction Models for the Pleasantness of Binary Mixtures in Olfaction

    Get PDF
    Whereas the rules underlying the perceived intensity of binary mixtures have been investigated, minimal efforts have been directed at elucidating the rules underlying the perceived pleasantness of such mixtures. To address this, 84 subjects ranked the pleasantness and intensity of 5 distinct binary mixtures (15 pairs, inter-stimulus interval = 4 s, inter-trial interval = 30 s, flow = 6 l/min, pulse = 2 s) constructed from different ratios (0:100%, 25:75%, 50:50%, 75:25%, and 100:0%, olfactometer-generated vapor phase). We found that in the majority of cases, the pleasantness of the mixture fell between the pleasantness values of its separated constituents and that it was strongly influenced by the relative intensities of the constituents. Based on these results, we proposed a prediction paradigm for the pleasantness of binary mixtures from the pleasantness of their separated constituents weighted by their respective perceived intensities. The uniqueness of the proposed paradigm is that it neither requires presetting an interaction constant between the mixture components nor require any factorization of the pleasantness weights. It does, nonetheless, require solid psychophysical data on the separated components at their different concentrations, and currently it can only explain the behavior of intermediate pleasantness of mixtures

    A biophysical model of the early olfactory system of honeybees

    Get PDF
    Experimental measurements often can only provide limited data from an animal’s sensory system. In addition, they exhibit large trial-to-trial and animal-to-animal variability. These limitations pose challenges to building mathematical models intended to make biologically relevant predictions. Here, we present a mathematical model of the early olfactory system of honeybees aiming to overcome these limitations. The model generates olfactory response patterns which conform to the statistics derived from experimental data for a variety of their properties. This allows considering the full dimensionality of the sensory input space as well as avoiding overfitting the underlying data sets. Several known biological mechanisms, including processes of chemical binding and activation of receptors, and spike generation and transmission in the antennal lobe network, are incorporated in the model at a minimal level. It can therefore be used to study how experimentally observed phenomena are shaped by these underlying biophysical processes. We verified that our model can replicate some key experimental findings that were not used when building it. Given appropriate data, our model can be generalized to the early olfactory systems of other insects. It hence provides a possible framework for future numerical and analytical studies of olfactory processing in insects
    corecore