164 research outputs found

    Simulated performance of an order statistic threshold strategy for detection of narrowband signals

    Get PDF
    The application of order statistics to signal detection is becoming an increasingly active area of research. This is due to the inherent robustness of rank estimators in the presence of large outliers that would significantly degrade more conventional mean-level-based detection systems. A detection strategy is presented in which the threshold estimate is obtained using order statistics. The performance of this algorithm in the presence of simulated interference and broadband noise is evaluated. In this way, the robustness of the proposed strategy in the presence of the interference can be fully assessed as a function of the interference, noise, and detector parameters

    AVIRIS ground data-processing system

    Get PDF
    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been under development at JPL for the past four years. During this time, a dedicated ground data-processing system has been designed and implemented to store and process the large amounts of data expected. This paper reviews the objectives of this ground data-processing system and describes the hardware. An outline of the data flow through the system is given, and the software and incorporated algorithms developed specifically for the systematic processing of AVIRIS data are described

    Radiation properties of extreme nulling pulsar J1502-5653

    Full text link
    We report on radiation properties of extreme nulling pulsar J1502-5653, by analyzing the data acquired from the Parkes 64-m telescope at 1374 MHz. The radio emission from this pulsar exhibits sequences of several tens to several hundreds consecutive burst pulses, separated by null pulses, and the appearance of the emission seems quasi-periodic. The null fraction from the data is estimated to be 93.6%. No emission is detected in the integrated profile of all null pulses. Systematic modulations of pulse intensity and phase are found at the beginning of burst-pulse sequences just after null. The intensity usually rises to a maximum for the first few pulses, then declines exponentially afterwards, and becomes stable after few tens of pulse periods. The peak phase appears at later longitudes for the first pulse, then drifts to earlier longitudes rapidly, and then systematic drifting gradually vanishes while the intensity becomes stable. In this pulsar, the intensity variation and phase modulation of pulses are correlated in a short duration after the emission starts following a null. Observed properties of the pulsar are compared with other nulling pulsars published previously, and the possible explanation for phase modulation is discussed.Comment: 5 pages, 7 figures. Accepted by MNRA

    PSR J1829+2456: a relativistic binary pulsar

    Get PDF
    We report the discovery of a new binary pulsar, PSR J1829+2456, found during a mid-latitude drift-scan survey with the Arecibo telescope. Our initial timing observations show the 41-ms pulsar to be in a 28-hr, slightly eccentric, binary orbit. The advance of periastron, omegadot = 0.28 +/- 0.01 deg/yr is derived from our timing observations spanning 200 days. Assuming that the advance of periastron is purely relativistic and a reasonable range of neutron star masses for PSR J1829+2456 we constrain the companion mass to be between 1.22 Msun and 1.38 Msun, making it likely to be another neutron star. We also place a firm upper limit on the pulsar mass of 1.38 Msun. The expected coalescence time due to gravitational-wave emission is long (~60 Gyr) and this system will not significantly impact upon calculations of merger rates that are relevant to upcoming instruments such as LIGO.Comment: Accepted MNRAS, 5 pages, 3 figure

    A Modified Scalar-Tensor-Vector Gravity Theory and the Constraint on its Parameters

    Full text link
    A gravity theory called scalar-tensor-vector gravity (STVG) has been recently developed and succeeded in solar system, astrophysical and cosmological scales without dark matter [J. W. Moffat, J. Cosmol. Astropart. Phys. 03, 004 (2006)]. However, two assumptions have been used: (i) B(r)=A1(r)B(r)=A^{-1}(r), where B(r)B(r) and A(r)A(r) are g00g_{00} and grrg_{rr} in the Schwarzschild coordinates (static and spherically symmetric); (ii) scalar field G=Const.G=Const. in the solar system. These two assumptions actually imply that the standard parametrized post-Newtonian parameter γ=1\gamma=1. In this paper, we relax these two assumptions and study STVG further by using the post-Newtonian (PN) approximation approach. With abandoning the assumptions, we find γ1\gamma\neq1 in general cases of STVG. Then, a version of modified STVG (MSTVG) is proposed through introducing a coupling function of scalar field G: θ(G)\theta(G). We have derived the metric and equations of motion (EOM) in 1PN for general matter without specific equation of state and NN point masses firstly. Subsequently, the secular periastron precession ω˙\dot{\omega} of binary pulsars in harmonic coordinates is given. After discussing two PPN parameters (γ\gamma and β\beta) and two Yukawa parameters (α\alpha and λ\lambda), we use ω˙\dot{\omega} of four binary pulsars data (PSR B1913+16, PSR B1534+12, PSR J0737-3039 and PSR B2127+11C) to constrain the Yukawa parameters for MSTVG: λ=(3.97±0.01)×108\lambda=(3.97\pm0.01)\times10^{8}m and α=(2.40±0.02)×108\alpha=(2.40\pm0.02)\times10^{-8} if we fix 2γβ1=0|2\gamma-\beta-1|=0.Comment: 39 pages, 4 figures, accepted by PR

    The two-hour orbit of a binary millisecond X-ray pulsar

    Full text link
    Typical radio pulsars are magnetized neutron stars that are born rapidly rotating and slow down as they age on time scales of 10 to 100 million years. However, millisecond radio pulsars spin very rapidly even though many are billions of years old. The most compelling explanation is that they have been "spun up" by the transfer of angular momentum during accretion of material from a companion star in so-called low-mass X-ray binary systems, LMXBs. (LMXBs consist of a neutron star or black hole accreting from a companion less than one solar mass.) The recent detection of coherent X-ray pulsations with a millisecond period from a suspected LMXB system appears to confirm this link. Here we report observations showing that the orbital period of this binary system is two hours, which establishes it as an LMXB. We also find an apparent modulation of the X-ray flux at the orbital period (at the two per cent level), with a broad minimum when the pulsar is behind this low-mass companion star. This system seems closely related to the "black widow" millisecond radio pulsars, which are evaporating their companions through irradiation. It may appear as an eclipsing radio pulsar during periods of X-ray quiescence.Comment: 4 pages with 1 figure. Style files included. Fig. 2 deleted and text revised. To appear in Nature. Press embargo until 18:00 GMT on 1998 July 2

    The Binary Pulsar PSR 1908+00 in NGC 6760

    Get PDF
    We present orbital parameters of the 3.6 ms binary pulsar 1908 +00 in the globular cluster NGC 6760. The orbital period is 3.4 hr, and the mass function is 3 x 10^6 M_⊙ , implying a minimum companion mass of 0.018 M_⊙ . The companion is probably degenerate; and if it is hydrogen, it is close to overflowing its Roche lobe. The only other millisecond binary radio pulsar systems with orbital period < 10 hr and mass function below 10-3 M_⊙ are the eclipsing pulsar 1957+20 and 1744-24A, and the very low mass binary 0021-721. These pulsars are ablating their companions and may be the progenitors of isolated millisecond pulsars. PSR 1908+00 shows no evidence for long-duration eclipses as are seen in 1744-24A, but short-duration eclipses as in 1957 + 20 are not excluded

    The Parkes multibeam pulsar survey: IV. Discovery of 180 pulsars and parameters for 281 previously known pulsars

    Full text link
    The Parkes multibeam pulsar survey has led to the discovery of more than 700 pulsars. In this paper, we provide timing solutions, flux densities and pulse profiles for 180 of these new discoveries. Two pulsars, PSRs J1736-2843 and J1847-0130 have rotational periods P > 6s and are therefore among the slowest rotating radio pulsars known. Conversely, with P = 1.8ms, PSR J1843-1113 has the third shortest period of pulsars currently known. This pulsar and PSR J1905+0400 (P = 3.8ms) are both solitary. We also provide orbital parameters for a new binary system, PSR J1420-5625, which has P = 34ms, an orbital period of 40 days and a minimum companion mass of 0.4 solar masses. The 10 degree-wide strip along the Galactic plane that was surveyed is known to contain 264 radio pulsars that were discovered prior to the multibeam pulsar survey. We have redetected almost all of these pulsars and provide new dispersion measure values and flux densities at 20cm for the redetected pulsars.Comment: 35 pages, accepted for publication in MNRAS, a high quality image of the figure on page 32 is available from http://www.atnf.csiro.au/research/pulsar/images/pmsurvey_fig.p

    The subpulse modulation properties of pulsars at 92 cm and the frequency dependence of subpulse modulation

    Full text link
    A large sample of pulsars has been observed to study their subpulse modulation at an observing wavelength (when achievable) of both 21 and 92 cm using the Westerbork Synthesis Radio Telescope. In this paper we present the 92-cm data and a comparison is made with the already published 21-cm results. We analysed 191 pulsars at 92 cm using fluctuation spectra. The sample of pulsars is as unbiased as possible towards any particular pulsar characteristics. For 15 pulsars drifting subpulses are discovered for the first time and 26 of the new drifters found in the 21-cm data are confirmed. We discovered nulling for 8 sources and 8 pulsars are found to intermittently emit single pulses that have pulse energies similar to giant pulses. It is estimated that at least half of the total population of pulsars have drifting subpulses when observations with a high enough signal-to-noise ratio would be available. It could well be that the drifting subpulse mechanism is an intrinsic property of the emission mechanism itself, although for some pulsars it is difficult or impossible to detect. Drifting subpulses are in general found at both frequencies, although the chance of detecting drifting subpulses is possibly slightly higher at 92 cm. It appears that the youngest pulsars have the most disordered subpulses and the subpulses become more and more organized into drifting subpulses as the pulsar ages. The correlations with the modulation indices are argued to be consistent with the picture in which the radio emission can be divided in a drifting subpulse signal plus a quasi-steady signal which becomes, on average, stronger at high observing frequencies. The measured values of P3 at the two frequencies are highly correlated, but there is no evidence for a correlation with other pulsar parameters.Comment: 30 pages, 10 figures, accepted for publication in A&A, astro-ph version is missing 191 figures due to file size restrictions. Please download the appendix from http://www.astron.nl/~stappers/wiki/doku.php?id=resources:publication
    corecore