
TDA Progress Report 42-92

N88-18796
October-December 1987

Simulated Performance of an Order Statistic Threshold

Strategy for Detection of Narrowband Signals

E. Satorius

Communications Systems Research Section

R. Brady and W. Deich

Image ProcessingApplications and Development Section

S. Gulkis and E. Olsen

Space Physicsand Astrophysics Section

The application of order statistics to signal detection is becoming an increasingly active

area of research. This is due to the inherent robustness of rank estimators in the presence

of large outliers that wouM significantly degrade more conventional mean-level-based

detection systems. Zn this article, a detection strategy is presented in which the threshold

estimate is obtained using order statistics. The performance of this algorithm in the pres-

ence of simulated interference and broadband noise is evaluated. In this way, the robust-

ness of the proposed strategy in the presence of the interference can be fully assessed as a

function of the interference, noise, and detector parameters.

I. Introduction

Development of a two million channel, FFT-based narrow-

band detection processor is currently under way at JPL for

use in various applications of the Deep Space Network [1],

[2]. It will also serve as a prototype for the Search for Extra-

terrestrial Intelligence (SETI) Sky Survey Processor [3]. The

system is being designed to process contiguous spectra at a

throughput rate of 40 MHz. The system output consists of

detected spectral intervals. Each interval is composed of a run

of one or more contiguous spectral bins for which the asso-

ciated power levels all exceed the system threshold. The

average power level, width, and location of each detected spec-

tral interval are computed and passed along to the system

computer which performs the final signal and interference

assessment.

The key parameter in this system is the threshold level. For

effective system performance, it is desirable that the threshold

be adaptive to accommodate a typically time varying back-

ground (thermal) noise level, and that it be as insensitive as
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possible to the presence of both narrowband signal and inter-

ference components that lie within the threshold estimation

window. Finally, it is desired that the threshold level be stable,

i.e., that it exhibit a small variance. Toward these ends, we
have considered an order-statistic-based threshold estimation

scheme wherein the system threshold is a constant times a
linear combination of successive nth order statistics computed

from the power spectral data out of the FFT (see Section II).

The scaling constant controls the false alarm rate.

The analysis and application of order statistics in general

has become an important area of research [4]-[6], and the

specific application of order statistics to signal detection is
currently receiving some attention [7]. This is due to the

inherent robustness of order statistics in the presence of large

outliers (e.g., narrowband interference) that would signifi-

cantly degrade the sensitivity of more conventional mean-level-

based detection systems. The real issue in the application of

order statistics to signal detection is the system performance

for a given interference environment. An analysis of an order-
statistic-based detection system presented in [7] clearly

demonstrates the robustness of order statistic threshold esti-

mators to the presence of a single narrowband interferer

within the estimation window. Of course, in practice there

will typically be multiple interferers with different ampli-
tudes and bandwidths within the window depending on the

specific interference environment.

This article summarizes the results of a preliminary com-

puter-aided simulation analysis that has been carried out to
evaluate system performance in the presence of interference.

In performing this analysis, the interference environment has
been simulated based on the results of limited survey data

(collected between 1 and 2 GHz) which provides the percent-

age of spectral bins contaminated by RF interference (RFI) as

a function of the RFI power level. In addition to RFI, a broad-

band Gaussian system noise component is included in this

analysis. Ideally, the system threshold level will reflect the

spectral level of the broadband system noise and not the RFI.

This system performance evaluation is carried out as a func-

tion of the system noise level relative to the RFI. The results
of this analysis not only serve to assess system performance as

a function of various system parameters, but also provide

guidelines for choosing various system design parameters to

enhance system performance.

II. Detector and RFI Models

The basic detector system model currently under considera-

tion is depicted in Fig. 1. Here the digitized input data are
transformed into the frequency domain via an FFT processor

and the power in each FFT bin is accumulated over a specified

number of transforms. The resulting accumulated power data

is then split into two paths. The direct-through path is fed into

a 5-point convolutional filter which forms the convolution of

successive accumulated spectra with a 5-point finite impulse

response (FIR) filter. Specifically, let Xi(k ) denote the level of
the ith successive accumulated power spectrum at the kth

spectral (FFT) bin. Then the output from the 5-point convo-

lutional filter is given by:

4

= w
po

where the w/ are the FIR filter weights. As discussed in [3],
the filter weights depend on the characteristics of the receive

antenna beam pattern and are matched to the expected signa-
ture of a fixed source in the sky as it is traversed by the receive

beam. Furthermore, a 5-coefficient FIR filter turns out to be

sufficient to minimize signal-to-noise ratio (SNR) losses in-

duced by the antenna beam in conjunction with the finite time
interval between successive accumulated spectra [3]. For pur-

poses of this analysis, the FIR filter weights are considered to
be a set of fixed constants downloaded from the system

computer.

In addition to being directly convolved with the FIR filter,

the accumulated power spectral data are also utilized in deter-

mining the system threshold level. As indicated in Fig. 1, the
threshold determination is composed of three steps: (1) com-

pute the nth smallest power level; (2) convolve successive nth

smallest power levels with the FIR filter; and (3) multiply the
result from (2) by a fixed gain constant. The result of (2) is to

further smooth the nth order statistics computed in (1) in a

manner which is perfectly consistent with the convolution of

the power accumulation data in the direct-through path. Note

that this smoothing operation also reduces the variance of the

order statistics. The final step effectively determines the num-

ber of detected noise intervals (or false alarm rate) out of the

detector system. The gain constant in (3) is typically chosen

based on a system-noise-only (no RFI) assumption. The goal of

this analysis is to determine the threshold stability as well as the

number of spectral interval detections in the presence of RFI.

After convolution and threshold level determination, the

convolved data are thresholded and information concerning

detected spectral intervals (interval width, location, and

average power level) is passed on to the system computer.

Ideally, the thresholding serves to discard most of the noise

data (so that the system computer is not overloaded) while

simultaneously retaining the desired signal information. The

purpose of passing along detected intervals and not individual

spectral bin detections is to reduce the amount of hit data
which will arise from broadband interference sources with
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bandwidths well in excess of the FFT bin resolution (_30 Hz).

Interference-related hit data which is passed on to the com-

puter can then be identified (e.g., based on frequency or time

discrimination) and eliminated from further analysis.

The RFI model developed for the system performance eval-
uation is based on limited survey data collected in the 1-2 GHz

band. In collecting this data, a spectral resolution width of

10 kHz was used, and the average number of threshold detec.
tions attributed to RFI sources over a 1 GHz bandwidth was

computed as a function of the threshold level. The fraction of

spectral bins contaminated by RFI fit a power law model as
the threshold level decreased over the range from -80 dBm to

-120 dBm. Figure 2 represents the least squares fit to this

data. In Fig. 2, the log (base 10) of the fraction of RFI-

contaminated bins is plotted versus the RFI threshold level.

For levels above -80 dBm, the fraction of spectral bins con-

taminated by the RFI is assumed constant. Below -120 dBm,

the survey data has been extrapolated exponentially to -140

dBm. Below -140 dBm a constant profile of approximately

15 percent RFI contamination is assumed. The simulation

results presented in Section III are based on this RFI density

profile.

There are two basic limitations associated with this model.

First, there are currently no available RFI data measurements

below approximately -120 dBm. Even for a 10 kHz spectral re-

solution, this is well above the thermal noise level (_-150 dBm

assuming a nominal 10 K system temperature and I0 kHz

bandwidth). It was thus necessary to extrapolate the data into

the low noise regions of interest as indicated in Fig. 2. A sec-
ond limitation is that the RFI data used to construct this

model profile have been collected using a spectral resolution

(10 kHz) which is far coarser than the system goal (_30 Hz).

Consequently, the RFI realizations based on this density pro-
file will differ significantly from those corresponding to a nar-

rowband RFI profile. Nevertheless, system performance re-

sults based on this model do highlight the RFI model attri-

butes which most critically impact system performance in
general.

III. System Performance Assessment

In the evaluation of system performance, a computer simu-

lation test bed has been developed which generates realizations

of RFI based on the amplitude density model depicted in

Fig. 2. Specifically, the RFI amplitude range has been quan-
tized into 2.5 dBm intervals, and the appropriate number of

RFI components has been injected into each interval. Further-

more, the RFI components have been distributed into non-

overlapping frequency bin intervals with all of the RFI com-

ponents in a frequency interval having amplitudes lying within

a given 2.5 dBm amplitude interval. Each RFI frequency inter-

val is randomly positioned across the total number of spectral

bins selected (i.e., total instantaneous bandwidth), and the
width of each RFI interval is chosen randomly up to a maxi-

mum of 40 contiguous spectral bins. The resulting distribution

of the RFI in frequency is termed the RFI "mask." A sample

RFI mask is presented in Fig. 3, where the average interference-

to-noise ratio (INR) is plotted across a total of 4096 spectral

bins corresponding to a system noise level of -110 dBm. The

power law increase in the number of RFI components with

decreasing INR is clearly observed.

Each simulation run is composed of multiple realizations of

RFI and additive broadband system noise corresponding to a

fixed RFI mask (one independent mask per simulation run).

The RFI amplitude (dBm) is uniformly randomized within

each 2.5 dBm amplitude interval, and the phases of all RFI

components are uniformly randomized over [0,21r) once every
spectral accumulation cycle. Independent broadband noise

realizations (generated in the frequency domain) are computed

for each power spectrum input to the accumulator.

The simulation input parameters include (1) total number

of spectral bins (nominally 4096); (2) number of spectra per

accumulation cycle (nominally 8); (3) average system noise
level within a spectral bin (this varied between -100 and

-150 dBm); (4) rank number, n, for the order statistic (n = 10

or 60); (5) gain constant for computing the system threshold

corresponding to a 0.1 percent false alarm rate in the absence

of RFI; and (6) total number of accumulated spectra (nomi-
nally I000 per run). All of these parameters, including the RFI

mask, are held constant during a simulation run. In addition,

the 5 convolutional filter weights are always fixed (at the

values 0.64, 0.89, 1.0, 0.89, and 0.64).

The two primary outputs from the system simulations are
the nth order statistic and the number of detected noise inter-

vals, averaged over all realizations, as a function of the system

noise level. Plots of the order statistics (normalized by their

respective means in the absence of RFI) are presented in Fig. 4

corresponding to the nominal simulation input parameters

given above. As is seen, when the noise level is well above the

majority of RFI components, i.e., above -90 dBm, then the

spectral bins are dominated by system noise and the resulting

nth order statistics approach those for the noise-only distri-
bution. Conversely, as the system noise level decreases to well

below the smallest RFI component, i.e., below -140 dBm,

then the RFI components contaminate a fixed number of

spectral bins and the order statistics increase due to the cor-

responding reduction in the number of noise-only bins. This is

clearly observed in Fig. 4, where a significant inflation of both
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the 10th and the 60th smallest order statistics occurs as the

noise level decreases. The net result of this inflation is a loss in

detector sensitivity. However, the sensitivity loss associated
with either order statistic is much less than would occur using

a conventional average power estimator [7].

Plots of the average number of detected spectral intervals

corresponding to both the 10th smallest and 60th smallest
order statistics are presented in Fig. 5. As is seen for both

cases, the average number of detected intervals increases from

the noise-only limit of approximately 4 (0.1 percent of 4096

spectral bins) to over 80 at the -140 dBm noise level and then
back to approximately 50 for noise levels below -150 dBm.

At these lower levels, the detected spectral intervals are com-

posed almost exclusively of the RFI frequency intervals-an

average of 50 such intervals were generated in the RFI masks
used for these runs. The number of additional detected noise-

only intervals in this case is limited by the inflation of the
nth order statistics as noted above. As the system noise level

increases to -140 dBm, a level which corresponds to the

majority of the RFI components (see Fig. 2), it interferes
with the RFI to produce random "splittings" of the low-level,

RFI frequency intervals. These splittings are manifested as an
increase in the number of detected noise intervals to over

20 times that expected in the absence of RFI. Such an increase

could impact the ability of the system computer to process all
of the detected hit data. A more precise assessment of the

impact of RFI on system performance will, in turn, require a

more complete set of RFI survey data, which is clearly an

important area for future investigation.

IV. Conclusions

Although the results of this preliminary simulation anal-

ysis depend critically on the assumed RFI density model,

some general conclusions can be made. In particular, it is

noted that system performance depends most critically on the

distribution of RFI components at levels comparable to or

greater than the broadband system noise level. RFI compo-
nents well below the system noise level do not significantly

impact system performance. RFI components well in excess of

the system noise level contaminate a fixed number of spectral
bins and thus produce a significant inflation of the system
threshold due to the decrease in the number of noise-only

spectral bins. This inflation has the effect of lowering the aver-

age number of detected noise-only spectral intervals as well as

reducing detector sensitivity. Large RFI components also in-
crease the total number of detected spectral intervals depend-

ing on the number of RFI intervals present. Note that the
number of RFI intervals will, in turn, depend on the frequency
distribution of the RFI. A small number of strong broadband

RFI sources will not significantly increase the total number

of detected spectral intervals, whereas a large number of strong
narrowband RFI sources will produce a significant increase

in the number of interval detections. Furthermore, as the RFI

level approaches the system noise, additional spectral interval
detections will occur due to RFI interval splitting caused by

the interaction of the broadband system noise with the RFI.

This splitting phenomenon will occur regardless of whether
the RFI is narrow or broadband. Further analysis is currently

being carried out to assess system performance in more realis-
tic RFI environments.
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