173 research outputs found

    Wetland habitat characteristics for waterfowl wintering in Camargue, Southern France : Implications for conservation

    Get PDF
    Les 74 étangs et marais de Camargue qui représentent plus de 90 % de la surface totale des zones humides locales, accueillent la totalité de la population d'oiseaux d'eau hivernant dans la région. Pendant la période 1967-68 à 1990-91, ces plans d'eau ont été caractérisés par 5 variables portant sur leur nature physique et par 2 variables portant sur leur exploitation humaine. Une Analyse Factorielle des Correspondances Multiples discrimine clairement les milieux doux qui sont chassés et fortement perturbés, et les milieux salés qui sont protégés. On observe une tendance au cours de ces 24 années; la distribution en mosaïque des milieux, caractéristique camarguaise, laisse progressivement la place à une distribution bi-modale, par suite des interventions humaines: d'une part une politique de protection en faveur des sites salés (nouvelles créations de réserves) et d'autre part des aménagements hydrauliques et un fort dérangement qui sont liés à la chasse, nouveau facteur de développement économique. Il en résulte une perte de diversité biologique et la nécessité de recourir à de nouveaux modèles de conservation. La taille du peuplement d'oiseaux d'eau ne reflète pas cette perte car elle semble résulter d'effets contradictoires des paramètres mesurés. La protection des habitats nécessaires aux populations d'oiseaux d'eau hivernants doit être repensée; il serait notamment judicieux que 1) des marais doux actuellement chassés soient mis en réserve et 2) que leur gestion réponde autant que possible aux caractéristiques méditerranéennes de variabilité et d'imprévisibilité du niveau d'eau et de salinité

    Shifting Developmental Trajectories During Critical Periods of Brain Formation

    Get PDF
    Critical periods of brain development are epochs of heightened plasticity driven by environmental influence necessary for normal brain function. Recent studies are beginning to shed light on the possibility that timely interventions during critical periods hold potential to reorient abnormal developmental trajectories in animal models of neurological and neuropsychiatric disorders. In this review, we re-examine the criteria defining critical periods, highlighting the recently discovered mechanisms of developmental plasticity in health and disease. In addition, we touch upon technological improvements for modeling critical periods in human-derived neural networks in vitro. These scientific advances associated with the use of developmental manipulations in the immature brain of animal models are the basic preclinical systems that will allow the future translatability of timely interventions into clinical applications for neurodevelopmental disorders such as intellectual disability, autism spectrum disorders (ASD) and schizophrenia.The work was supported by the Australian National University to ND and by the Spanish Ministry of Science, Innovation and Universities (Ministerio de Ciencia, Innovación y Universidades, RTI2018-100872-J-I00) as well as the CIDEGENT excellence research program of the Valencian regional government (CIDENGENT/2019/044) to ID

    A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area

    Get PDF
    GABA-containing (GABAergic) interneurons comprise a very heterogeneous group of cells that are crucial for cortical function. Different classes of interneurons specialize in targeting specific subcellular domains of excitatory pyramidal cells or other interneurons, which provides cortical circuits with an enormous capability for information processing. As in other regions of the CNS, cortical interneuron diversity is thought to emerge from the genetic specification of different groups of progenitor cells within the subpallium. Most cortical interneurons originate from two main regions, the medial and the caudal ganglionic eminences (MGE and CGE, respectively). In addition, it has been shown that progenitors in the embryonic preoptic area (POA) also produce a small population of cortical GABAergic interneurons. Here, we show that the contribution of the POA to the complement of cortical GABAergic interneurons is larger than previously believed. Using genetic fate mapping and in utero transplantation experiments, we demonstrate that Dbx1-expressing progenitor cells in the POA give rise to a small but highly diverse cohort of cortical interneurons, with some neurochemical and electrophysiological characteristics that were previously attributed to MGE- or CGE-derived interneurons. There are, however, some features that seem to distinguish POA-derived interneurons from MGE- or CGE-derived cells, such as their preferential laminar location. These results indicate that the mechanisms controlling the specification of different classes of cortical interneurons might be more complex than previously expected. Together with earlier findings, our results also suggest that the POA generates nearly 10% of the GABAergic interneurons in the cerebral cortex of the mous

    New Insights Into Cholinergic Neuron Diversity

    Get PDF
    Cholinergic neurons comprise a small population of cells in the striatum but have fundamental roles in fine tuning brain function, and in the etiology of neurological and psychiatric disorders such as Parkinson’s disease (PD) or schizophrenia. The process of developmental cell specification underlying neuronal identity and function is an area of great current interest. There has been significant progress in identifying the developmental origins, commonalities in molecular markers, and physiological properties of the cholinergic neurons. Currently, we are aware of a number of key factors that promote cholinergic fate during development. However, the extent of cholinergic cell diversity is still largely underestimated. New insights into the biological basis of their specification indicate that cholinergic neurons may be far more diverse than previously thought. This review article, highlights the physiological features and the synaptic properties that segregate cholinergic cell subtypes. It provides an accurate picture of cholinergic cell diversity underlying their organization and function in neuronal networks. This review article, also discusses current challenges in deciphering the logic of the cholinergic cell heterogeneity that plays a fundamental role in the control of neural processes in health and disease.Some of the research in this review and its writing were supported by the Australian National Universit

    Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups

    Get PDF
    Midbrain dopaminergic neurons (mDA neurons) are essential for the control of diverse motor and cognitive behaviors. However, our understanding of the activity of immature mDA neurons is rudimentary. Rodent mDA neurons migrate and differentiate early in embryonic life and dopaminergic axons enter the striatum and contact striatal neurons a few days before birth, but when these are functional is not known. Here, we recorded Ca2+ transients and Na+ spikes from embryonic (E16–E18) and early postnatal (P0–P7) mDA neurons with dynamic two-photon imaging and patch clamp techniques in slices from tyrosine hydroxylase-GFP mice, and measured evoked dopamine release in the striatum with amperometry. We show that half of identified E16–P0 mDA neurons spontaneously generate non-synaptic, intrinsically driven Ca2+ spikes and Ca2+ plateaus mediated by N- and L-type voltage-gated Ca2+ channels. Starting from E18–P0, half of the mDA neurons also reliably generate overshooting Na+ spikes with an abrupt maturation at birth (P0 = E19). At that stage (E18–P0), dopaminergic terminals release dopamine in a calcium-dependent manner in the striatum in response to local stimulation. This suggests that mouse striatal dopaminergic synapses are functional at birth

    A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area

    Get PDF
    GABA-containing (GABAergic) interneurons comprise a very heterogeneous group of cells that are crucial for cortical function. Different classes of interneurons specialize in targeting specific subcellular domains of excitatory pyramidal cells or other interneurons, which provides cortical circuits with an enormous capability for information processing. As in other regions of the CNS, cortical interneuron diversity is thought to emerge from the genetic specification of different groups of progenitor cells within the subpallium. Most cortical interneurons originate from two main regions, the medial and the caudal ganglionic eminences (MGE and CGE, respectively). In addition, it has been shown that progenitors in the embryonic preoptic area (POA) also produce a small population of cortical GABAergic interneurons. Here, we show that the contribution of the POA to the complement of cortical GABAergic interneurons is larger than previously believed. Using genetic fate mapping and in utero transplantation experiments, we demonstrate that Dbx1-expressing progenitor cells in the POA give rise to a small but highly diverse cohort of cortical interneurons, with some neurochemical and electrophysiological characteristics that were previously attributed to MGE- or CGE-derived interneurons. There are, however, some features that seem to distinguish POA-derived interneurons from MGE- or CGE-derived cells, such as their preferential laminar location. These results indicate that the mechanisms controlling the specification of different classes of cortical interneurons might be more complex than previously expected. Together with earlier findings, our results also suggest that the POA generates nearly 10% of the GABAergic interneurons in the cerebral cortex of the mouse.Fil: Gelman, Diego Matias. Universidad Miguel Hernández; España. Consejo Superior de Investigaciones Cientificas. Instituto de Neurociencia de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular; ArgentinaFil: Griveau, Amelie. Universite Paris Diderot - Paris 7; FranciaFil: Dehorter, Nathalie. Consejo Superior de Investigaciones Cientificas. Instituto de Neurociencia de Alicante; España. Universidad Miguel Hernández; EspañaFil: Teissier, Anne. Universite Paris Diderot - Paris 7; FranciaFil: Varela, Carolina. Consejo Superior de Investigaciones Cientificas. Instituto de Neurociencia de Alicante; España. Universidad Miguel Hernández; EspañaFil: Pla, Ramon. Consejo Superior de Investigaciones Cientificas. Instituto de Neurociencia de Alicante; España. Universidad Miguel Hernández; EspañaFil: Pierani, Alessandra. Universite Paris Diderot - Paris 7; FranciaFil: Marin, Oscar. Consejo Superior de Investigaciones Cientificas. Instituto de Neurociencia de Alicante; España. Universidad Miguel Hernández; Españ

    Subthalamic lesion or levodopa treatment rescues giant GABAergic currents of PINK1-deficient striatum

    Get PDF
    Cellular electrophysiological signatures of Parkinson's disease described in the pharmacological 6-hydroxydopamine (6-OHDA) animal models of Parkinson's disease include spontaneous repetitive giant GABAergic currents in a subpopulation of striatal medium spiny neurons (MSNs), and spontaneous rhythmic bursts of spikes generated by subthalamic nucleus (STN) neurons.Weinvestigated whether similar signatures are present in Pink1-/- mice, a genetic rodent model of the PARK6 variant of Parkinson's disease. Although 9- to 24-month-old Pink1-/-mice show reduced striatal dopamine content and release, and impaired spontaneous locomotion, the relevance of this model to Parkinson's disease has been questioned because mesencephalic dopaminergic neurons do not degenerate during the mouse lifespan. We show that 75% of the MSNs of 5- to 7-month-old Pink1-/- mice exhibit giant GABAergic currents, occurring either singly or in bursts (at 40 Hz), rather than the low-frequency (2 Hz), low-amplitude, tonic GABAergic drive common to wild-type MSNs of the same age. STN neurons from 5- to 7-month-old Pink1-/- mice spontaneously generated bursts of spikes instead of the control tonic drive. Chronic kainic acid lesion of the STN or chronic levodopa treatment reliably suppressed the giant GABAergic currents of MSNs after 1 month and replaced them with the control tonic activity. The similarity between the in vitro resting states of Pink1 MSNs and those of fully dopamine (DA)-depleted MSNs of 6-OHDA-treated mice, together with the beneficial effect of levodopa treatment, strongly suggest that dysfunction of mesencephalic dopaminergic neurons in Pink1-/-mice is more severe than expected. The beneficial effect of the STN lesion also suggests that pathological STN activity strongly influences striatal networks in Pink1-/- mic

    Er81 transcription factor fine-tunes striatal cholinergic interneuron activity and drives habit formation

    Get PDF
    The molecular mechanisms tuning cholinergic interneuron (CIN) activity, although crucial for striatal function and behavior, remain largely unexplored. Previous studies report that the Etv1/Er81 transcription factor is vital for regulating neuronal maturation and activity. While Er81 is known to be expressed in the striatum during development, its specific role in defining CIN properties and the resulting consequences on striatal function is unknown. We report here that Er81 is expressed in CINs and its specific ablation leads to prominent changes in their molecular, morphologic, and electrophysiological features. In particular, the lack of Er81 amplifies intrinsic delayed-rectifier and hyperpolarization-activated currents, which subsequently alters the tonic and phasic activity of CINs. We further reveal that Er81 expression is required for normal CIN pause and time-locked responses to sensorimotor inputs in awake mice. Overall, this study uncovers a new cell type-specific control of CIN function in the striatum which drives habit formation in adult male mice

    Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants

    Get PDF
    Electroencephalogram (EEG) approaches may provide important information about developmental changes in brain-state dynamics during general anesthesia. We used multi-electrode EEG, analyzed with multitaper spectral methods and video recording of body movement to characterize the spatio-temporal dynamics of brain activity in 36 infants 0–6 months old when awake, and during maintenance of and emergence from sevoflurane general anesthesia. During maintenance: (1) slow-delta oscillations were present in all ages; (2) theta and alpha oscillations emerged around 4 months; (3) unlike adults, all infants lacked frontal alpha predominance and coherence. Alpha power was greatest during maintenance, compared to awake and emergence in infants at 4–6 months. During emergence, theta and alpha power decreased with decreasing sevoflurane concentration in infants at 4–6 months. These EEG dynamic differences are likely due to developmental factors including regional differences in synaptogenesis, glucose metabolism, and myelination across the cortex. We demonstrate the need to apply age-adjusted analytic approaches to develop neurophysiologic-based strategies for pediatric anesthetic state monitoring.National Institutes of Health (U.S.) (R01-GM104948)National Institutes of Health (U.S.) (DP2-OD006454)Massachusetts General Hospita
    corecore