109 research outputs found

    Bounded Model Checking for Probabilistic Programs

    Get PDF
    In this paper we investigate the applicability of standard model checking approaches to verifying properties in probabilistic programming. As the operational model for a standard probabilistic program is a potentially infinite parametric Markov decision process, no direct adaption of existing techniques is possible. Therefore, we propose an on-the-fly approach where the operational model is successively created and verified via a step-wise execution of the program. This approach enables to take key features of many probabilistic programs into account: nondeterminism and conditioning. We discuss the restrictions and demonstrate the scalability on several benchmarks

    Reachability in Parametric Interval Markov Chains using Constraints

    Full text link
    Parametric Interval Markov Chains (pIMCs) are a specification formalism that extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account imprecision in the transition probability values: transitions in pIMCs are labeled with parametric intervals of probabilities. In this work, we study the difference between pIMCs and other Markov Chain abstractions models and investigate the two usual semantics for IMCs: once-and-for-all and at-every-step. In particular, we prove that both semantics agree on the maximal/minimal reachability probabilities of a given IMC. We then investigate solutions to several parameter synthesis problems in the context of pIMCs -- consistency, qualitative reachability and quantitative reachability -- that rely on constraint encodings. Finally, we propose a prototype implementation of our constraint encodings with promising results

    Reactive Petri Nets for Workflow Modeling

    Full text link
    Petri nets are widely used for modeling and analyzing workflows

    PrIC3: Property Directed Reachability for MDPs

    Get PDF
    IC3 has been a leap forward in symbolic model checking. This paper proposes PrIC3 (pronounced pricy-three), a conservative extension of IC3 to symbolic model checking of MDPs. Our main focus is to develop the theory underlying PrIC3. Alongside, we present a first implementation of PrIC3 including the key ingredients from IC3 such as generalization, repushing, and propagation

    Xcd - Modular, Realizable Software Architectures

    Get PDF
    Connector-Centric Design (Xcd) is centred around a new formal architectural description language, focusing mainly on complex connectors. Inspired by Wright and BIP, Xcd aims to cleanly separate in a modular manner the high-level functional, interaction, and control system behaviours. This can aid in both increasing the understandability of architectural specifications and the reusability of components and connectors themselves. Through the independent specification of control behaviours, Xcd allows designers to experiment more easily with different design decisions early on, without having to modify the functional behaviour specifications (components) or the interaction ones(connectors). At the same time Xcd attempts to ease the architectural specification by following (and extending) a Design-by-Contract approach, which is more familiar to software developers than process algebras like CSP or languages like BIP that are closer to synchronous/hardware specification languages. Xcd extends Design-by-Contract (i) by separating component contracts into functional and interaction sub-contracts, and (ii) by allowing service consumers to specify their own contractual clauses. Xcd connector specifications are completely decentralized, foregoing Wright’s connector glue, to ensure their realizability by construction

    More Scalable LTL Model Checking via Discovering Design-Space Dependencies (D3)

    Get PDF
    Modern system design often requires comparing several models over a large design space. Different models arise out of a need to weigh different design choices, to check core capabilities of versions with varying features, or to analyze a future version against previous ones. Model checking can compare different models; however, applying model checking off-the-shelf may not scale due to the large size of the design space for today’s complex systems. We exploit relationships between different models of the same (or related) systems to optimize the model-checking search. Our algorithm, D3 , preprocesses the design space and checks fewer model-checking instances, e.g., using nuXmv. It automatically prunes the search space by reducing both the number of models to check, and the number of LTL properties that need to be checked for each model in order to provide the complete model-checking verdict for every individual model-property pair. We formalize heuristics that improve the performance of D3 . We demonstrate the scalability of D3 by extensive experimental evaluation, e.g., by checking 1,620 real-life models for NASA’s NextGen air traffic control system. Compared to checking each model-property pair individually, D3 is up to 9.4 × faster

    One Net Fits All: A unifying semantics of Dynamic Fault Trees using GSPNs

    Get PDF
    Dynamic Fault Trees (DFTs) are a prominent model in reliability engineering. They are strictly more expressive than static fault trees, but this comes at a price: their interpretation is non-trivial and leaves quite some freedom. This paper presents a GSPN semantics for DFTs. This semantics is rather simple and compositional. The key feature is that this GSPN semantics unifies all existing DFT semantics from the literature. All semantic variants can be obtained by choosing appropriate priorities and treatment of non-determinism.Comment: Accepted at Petri Nets 201

    LNCS

    Get PDF
    We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both randomness as well as angelic and demonic non-determinism. Lexicographic order allows to consider multiple objectives with a strict preference order over the satisfaction of the objectives. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. We establish determinacy of such games and present strategy and computational complexity results. For strategy complexity, we show that lexicographically optimal strategies exist that are deterministic and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in NP∩coNP , matching the current known bound for single objectives; and in general the decision problem is PSPACE -hard and can be solved in NEXPTIME∩coNEXPTIME . We present an algorithm that computes the lexicographically optimal strategies via a reduction to computation of optimal strategies in a sequence of single-objectives games. We have implemented our algorithm and report experimental results on various case studies

    Investigations on Soundness Regarding Lazy Activities

    Full text link
    Abstract. Current approaches for proving the correctness of business processes focus on either soundness, weak soundness, or relaxed sound-ness. Soundness states that each activity should be on a path from the initial to the final activity, that after the final activity has been reached no other activities should become active, and that there are no unreach-able activities. Relaxed soundness softens soundness by stating that each activity should be able to participate in the business process, whereas weak soundness allows unreachable activities. However, all these kinds of soundness are not satisfactory for processes containing discriminator, n-out-of-m-join or multiple instances without synchronization patterns that can leave running (lazy) activities behind. As these patterns occur in interacting business processes, we propose a solution based on lazy soundness. We utilize the pi-calculus to discuss and implement reasoning on lazy soundness.
    corecore