In this paper we investigate the applicability of standard model checking
approaches to verifying properties in probabilistic programming. As the
operational model for a standard probabilistic program is a potentially
infinite parametric Markov decision process, no direct adaption of existing
techniques is possible. Therefore, we propose an on-the-fly approach where the
operational model is successively created and verified via a step-wise
execution of the program. This approach enables to take key features of many
probabilistic programs into account: nondeterminism and conditioning. We
discuss the restrictions and demonstrate the scalability on several benchmarks