175 research outputs found
Bounded Model Checking for Probabilistic Programs
In this paper we investigate the applicability of standard model checking
approaches to verifying properties in probabilistic programming. As the
operational model for a standard probabilistic program is a potentially
infinite parametric Markov decision process, no direct adaption of existing
techniques is possible. Therefore, we propose an on-the-fly approach where the
operational model is successively created and verified via a step-wise
execution of the program. This approach enables to take key features of many
probabilistic programs into account: nondeterminism and conditioning. We
discuss the restrictions and demonstrate the scalability on several benchmarks
Parameter-Independent Strategies for pMDPs via POMDPs
Markov Decision Processes (MDPs) are a popular class of models suitable for
solving control decision problems in probabilistic reactive systems. We
consider parametric MDPs (pMDPs) that include parameters in some of the
transition probabilities to account for stochastic uncertainties of the
environment such as noise or input disturbances.
We study pMDPs with reachability objectives where the parameter values are
unknown and impossible to measure directly during execution, but there is a
probability distribution known over the parameter values. We study for the
first time computing parameter-independent strategies that are expectation
optimal, i.e., optimize the expected reachability probability under the
probability distribution over the parameters. We present an encoding of our
problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem
to computing optimal strategies in POMDPs.
We evaluate our method experimentally on several benchmarks: a motivating
(repeated) learner model; a series of benchmarks of varying configurations of a
robot moving on a grid; and a consensus protocol.Comment: Extended version of a QEST 2018 pape
Reachability in Parametric Interval Markov Chains using Constraints
Parametric Interval Markov Chains (pIMCs) are a specification formalism that
extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into
account imprecision in the transition probability values: transitions in pIMCs
are labeled with parametric intervals of probabilities. In this work, we study
the difference between pIMCs and other Markov Chain abstractions models and
investigate the two usual semantics for IMCs: once-and-for-all and
at-every-step. In particular, we prove that both semantics agree on the
maximal/minimal reachability probabilities of a given IMC. We then investigate
solutions to several parameter synthesis problems in the context of pIMCs --
consistency, qualitative reachability and quantitative reachability -- that
rely on constraint encodings. Finally, we propose a prototype implementation of
our constraint encodings with promising results
The Complexity of Graph-Based Reductions for Reachability in Markov Decision Processes
We study the never-worse relation (NWR) for Markov decision processes with an
infinite-horizon reachability objective. A state q is never worse than a state
p if the maximal probability of reaching the target set of states from p is at
most the same value from q, regard- less of the probabilities labelling the
transitions. Extremal-probability states, end components, and essential states
are all special cases of the equivalence relation induced by the NWR. Using the
NWR, states in the same equivalence class can be collapsed. Then, actions
leading to sub- optimal states can be removed. We show the natural decision
problem associated to computing the NWR is coNP-complete. Finally, we ex- tend
a previously known incomplete polynomial-time iterative algorithm to
under-approximate the NWR
PrIC3: Property Directed Reachability for MDPs
IC3 has been a leap forward in symbolic model checking. This paper proposes
PrIC3 (pronounced pricy-three), a conservative extension of IC3 to symbolic
model checking of MDPs. Our main focus is to develop the theory underlying
PrIC3. Alongside, we present a first implementation of PrIC3 including the key
ingredients from IC3 such as generalization, repushing, and propagation
The quantitative verification benchmark set
We present an extensive collection of quantitative models to facilitate the development, comparison, and benchmarking of new verification algorithms and tools. All models have a formal semantics in terms of extensions of Markov chains, are provided in the Jani format, and are documented by a comprehensive set of metadata. The collection is highly diverse: it includes established probabilistic verification and planning benchmarks, industrial case studies, models of biological systems, dynamic fault trees, and Petri net examples, all originally specified in a variety of modelling languages. It archives detailed tool performance data for each model, enabling immediate comparisons between tools and among tool versions over time. The collection is easy to access via a client-side web application at qcomp.org with powerful search and visualisation features. It can be extended via a Git-based submission process, and is openly accessible according to the terms of the CC-BY license
Equilibria-based Probabilistic Model Checking for Concurrent Stochastic Games
Probabilistic model checking for stochastic games enables formal verification
of systems that comprise competing or collaborating entities operating in a
stochastic environment. Despite good progress in the area, existing approaches
focus on zero-sum goals and cannot reason about scenarios where entities are
endowed with different objectives. In this paper, we propose probabilistic
model checking techniques for concurrent stochastic games based on Nash
equilibria. We extend the temporal logic rPATL (probabilistic alternating-time
temporal logic with rewards) to allow reasoning about players with distinct
quantitative goals, which capture either the probability of an event occurring
or a reward measure. We present algorithms to synthesise strategies that are
subgame perfect social welfare optimal Nash equilibria, i.e., where there is no
incentive for any players to unilaterally change their strategy in any state of
the game, whilst the combined probabilities or rewards are maximised. We
implement our techniques in the PRISM-games tool and apply them to several case
studies, including network protocols and robot navigation, showing the benefits
compared to existing approaches
The Evolution of Word Composition in Metazoan Promoter Sequence
The field of molecular evolution provides many examples of the principle that molecular differences between species contain information about evolutionary history. One surprising case can be found in the frequency of short words in DNA: more closely related species have more similar word compositions. Interest in this has often focused on its utility in deducing phylogenetic relationships. However, it is also of interest because of the opportunity it provides for studying the evolution of genome function. Word-frequency differences between species change too slowly to be purely the result of random mutational drift. Rather, their slow pattern of change reflects the direct or indirect action of purifying selection and the presence of functional constraints. Many such constraints are likely to exist, and an important challenge is to distinguish them. Here we develop a method to do so by isolating the effects acting at different word sizes. We apply our method to 2-, 4-, and 8-base-pair (bp) words across several classes of noncoding sequence. Our major result is that similarities in 8-bp word frequencies scale with evolutionary time for regions immediately upstream of genes. This association is present although weaker in intronic sequence, but cannot be detected in intergenic sequence using our method. In contrast, 2-bp and 4-bp word frequencies scale with time in all classes of noncoding sequence. These results suggest that different genomic processes are involved at different word sizes. The pattern in 2-bp and 4-bp words may be due to evolutionary changes in processes such as DNA replication and repair, as has been suggested before. The pattern in 8-bp words may reflect evolutionary changes in gene-regulatory machinery, such as changes in the frequencies of transcription-factor binding sites, or in the affinity of transcription factors for particular sequences
- …