175 research outputs found

    Bounded Model Checking for Probabilistic Programs

    Get PDF
    In this paper we investigate the applicability of standard model checking approaches to verifying properties in probabilistic programming. As the operational model for a standard probabilistic program is a potentially infinite parametric Markov decision process, no direct adaption of existing techniques is possible. Therefore, we propose an on-the-fly approach where the operational model is successively created and verified via a step-wise execution of the program. This approach enables to take key features of many probabilistic programs into account: nondeterminism and conditioning. We discuss the restrictions and demonstrate the scalability on several benchmarks

    Parameter-Independent Strategies for pMDPs via POMDPs

    Full text link
    Markov Decision Processes (MDPs) are a popular class of models suitable for solving control decision problems in probabilistic reactive systems. We consider parametric MDPs (pMDPs) that include parameters in some of the transition probabilities to account for stochastic uncertainties of the environment such as noise or input disturbances. We study pMDPs with reachability objectives where the parameter values are unknown and impossible to measure directly during execution, but there is a probability distribution known over the parameter values. We study for the first time computing parameter-independent strategies that are expectation optimal, i.e., optimize the expected reachability probability under the probability distribution over the parameters. We present an encoding of our problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem to computing optimal strategies in POMDPs. We evaluate our method experimentally on several benchmarks: a motivating (repeated) learner model; a series of benchmarks of varying configurations of a robot moving on a grid; and a consensus protocol.Comment: Extended version of a QEST 2018 pape

    Reachability in Parametric Interval Markov Chains using Constraints

    Full text link
    Parametric Interval Markov Chains (pIMCs) are a specification formalism that extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account imprecision in the transition probability values: transitions in pIMCs are labeled with parametric intervals of probabilities. In this work, we study the difference between pIMCs and other Markov Chain abstractions models and investigate the two usual semantics for IMCs: once-and-for-all and at-every-step. In particular, we prove that both semantics agree on the maximal/minimal reachability probabilities of a given IMC. We then investigate solutions to several parameter synthesis problems in the context of pIMCs -- consistency, qualitative reachability and quantitative reachability -- that rely on constraint encodings. Finally, we propose a prototype implementation of our constraint encodings with promising results

    The Complexity of Graph-Based Reductions for Reachability in Markov Decision Processes

    Full text link
    We study the never-worse relation (NWR) for Markov decision processes with an infinite-horizon reachability objective. A state q is never worse than a state p if the maximal probability of reaching the target set of states from p is at most the same value from q, regard- less of the probabilities labelling the transitions. Extremal-probability states, end components, and essential states are all special cases of the equivalence relation induced by the NWR. Using the NWR, states in the same equivalence class can be collapsed. Then, actions leading to sub- optimal states can be removed. We show the natural decision problem associated to computing the NWR is coNP-complete. Finally, we ex- tend a previously known incomplete polynomial-time iterative algorithm to under-approximate the NWR

    Threnody

    Get PDF

    PrIC3: Property Directed Reachability for MDPs

    Get PDF
    IC3 has been a leap forward in symbolic model checking. This paper proposes PrIC3 (pronounced pricy-three), a conservative extension of IC3 to symbolic model checking of MDPs. Our main focus is to develop the theory underlying PrIC3. Alongside, we present a first implementation of PrIC3 including the key ingredients from IC3 such as generalization, repushing, and propagation

    The quantitative verification benchmark set

    Get PDF
    We present an extensive collection of quantitative models to facilitate the development, comparison, and benchmarking of new verification algorithms and tools. All models have a formal semantics in terms of extensions of Markov chains, are provided in the Jani format, and are documented by a comprehensive set of metadata. The collection is highly diverse: it includes established probabilistic verification and planning benchmarks, industrial case studies, models of biological systems, dynamic fault trees, and Petri net examples, all originally specified in a variety of modelling languages. It archives detailed tool performance data for each model, enabling immediate comparisons between tools and among tool versions over time. The collection is easy to access via a client-side web application at qcomp.org with powerful search and visualisation features. It can be extended via a Git-based submission process, and is openly accessible according to the terms of the CC-BY license

    Equilibria-based Probabilistic Model Checking for Concurrent Stochastic Games

    Get PDF
    Probabilistic model checking for stochastic games enables formal verification of systems that comprise competing or collaborating entities operating in a stochastic environment. Despite good progress in the area, existing approaches focus on zero-sum goals and cannot reason about scenarios where entities are endowed with different objectives. In this paper, we propose probabilistic model checking techniques for concurrent stochastic games based on Nash equilibria. We extend the temporal logic rPATL (probabilistic alternating-time temporal logic with rewards) to allow reasoning about players with distinct quantitative goals, which capture either the probability of an event occurring or a reward measure. We present algorithms to synthesise strategies that are subgame perfect social welfare optimal Nash equilibria, i.e., where there is no incentive for any players to unilaterally change their strategy in any state of the game, whilst the combined probabilities or rewards are maximised. We implement our techniques in the PRISM-games tool and apply them to several case studies, including network protocols and robot navigation, showing the benefits compared to existing approaches

    The Evolution of Word Composition in Metazoan Promoter Sequence

    Get PDF
    The field of molecular evolution provides many examples of the principle that molecular differences between species contain information about evolutionary history. One surprising case can be found in the frequency of short words in DNA: more closely related species have more similar word compositions. Interest in this has often focused on its utility in deducing phylogenetic relationships. However, it is also of interest because of the opportunity it provides for studying the evolution of genome function. Word-frequency differences between species change too slowly to be purely the result of random mutational drift. Rather, their slow pattern of change reflects the direct or indirect action of purifying selection and the presence of functional constraints. Many such constraints are likely to exist, and an important challenge is to distinguish them. Here we develop a method to do so by isolating the effects acting at different word sizes. We apply our method to 2-, 4-, and 8-base-pair (bp) words across several classes of noncoding sequence. Our major result is that similarities in 8-bp word frequencies scale with evolutionary time for regions immediately upstream of genes. This association is present although weaker in intronic sequence, but cannot be detected in intergenic sequence using our method. In contrast, 2-bp and 4-bp word frequencies scale with time in all classes of noncoding sequence. These results suggest that different genomic processes are involved at different word sizes. The pattern in 2-bp and 4-bp words may be due to evolutionary changes in processes such as DNA replication and repair, as has been suggested before. The pattern in 8-bp words may reflect evolutionary changes in gene-regulatory machinery, such as changes in the frequencies of transcription-factor binding sites, or in the affinity of transcription factors for particular sequences
    corecore