308 research outputs found

    Dual phase patterning during a congruent grain boundary phase transition in elemental copper

    Get PDF
    The phase behavior of grain boundaries can have a strong influence on interfacial properties. Little is known about the emergence of grain boundary phases in elemental metal systems and how they transform. Here, we observe the nanoscale patterning of a grain boundary by two alternating grain boundary phases with distinct atomic structures in elemental copper by atomic resolution imaging. The same grain boundary phases are found by computational grain boundary structure search indicating a first-order transformation. Finite temperature atomistic simulations reveal a congruent, diffusionless transition between these phases under ambient pressure. The patterning of the grain boundary at room temperature is dominated by the grain boundary phase junctions separating the phase segments. Our analysis suggests that the reduced mobility of the phase junctions at low temperatures kinetically limits the transformation, but repulsive elastic interactions between them and disconnections could additionally stabilize the pattern formation

    Discovery of benzo[g]indol-3-carboxylates as potent inhibitors of microsomal prostaglandin E(2) synthase-1.

    No full text
    Selective inhibition of pro-inflammatory prostaglandin (PG)E2 formation via microsomal PGE2 synthase-1 (mPGES-1) might be superior over inhibition of all cyclooxygenase (COX)-derived products by non-steroidal anti-inflammatory drugs (NSAIDs) and coxibs. We recently showed that benzo[g]indol-3-carboxylates potently suppress leukotriene biosynthesis by inhibiting 5-lipoxygenase. Here, we describe the discovery of benzo[g]indol-3-carboxylates as a novel class of potent mPGES-1 inhibitors (IC50 ≥ 0.1 μM). Ethyl 2-(3-chlorobenzyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (compound 7a) inhibits human mPGES-1 in a cell-free assay (IC50 = 0.6 μM) as well as in intact A549 cells (IC50 = 2 μM), and suppressed PGE2 pleural levels in rat carrageenan-induced pleurisy. Inhibition of cellular COX-1/2 activity was significantly less pronounced. Compound 7a significantly reduced inflammatory reactions in the carrageenan-induced mouse paw edema and rat pleurisy. Together, based on the select and potent inhibition of mPGES-1 and 5-lipoxygenase, benzo[g]indol-3-carboxylates possess potential as novel anti-inflammatory drugs with a valuable pharmacological profile

    Sensing Molecules with Metal–Organic Framework Functionalized Graphene Transistors

    Get PDF
    Graphene is inherently sensitive to vicinal dielectrics and local charge distributions, a property that can be probed by the position of the Dirac point in graphene field-effect transistors. Exploiting this as a useful sensing principle requires selectivity; however, graphene itself exhibits no molecule-specific interaction. Complementarily, metal–organic frameworks can be tailored to selective adsorption of specific molecular species. Here, a selective ethanol sensor is demonstrated by growing a surface-mounted metal–organic framework (SURMOF) directly onto graphene field-effect transistors (GFETs). Unprecedented shifts of the Dirac point, as large as 15 V, are observed when the SURMOF/GFET is exposed to ethanol, while a vanishingly small response is observed for isopropanol, methanol, and other constituents of the air, including water. The synthesis and conditioning of the hybrid materials sensor with its functional characteristics are described and a model is proposed to explain the origin, magnitude, and direction of the Dirac point voltage shift. Tailoring multiple SURMOFs to adsorb specific gases on an array of such devices thus generates a versatile, selective, and highly sensitive platform for sensing applications

    MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer

    Get PDF
    MicroRNA deregulation is frequent in human colorectal cancers (CRCs), but little is known as to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b overexpression is triggered in mice and humans by APC loss, PTEN/PI3K pathway deregulation, and SRC overexpression and promotes tumor transformation and progression. We show that miR-135b upregulation is common in sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth by controlling genes involved in proliferation, invasion, and apoptosis. We identify miR-135b as a key downsteam effector of oncogenic pathways and a potential target for CRC treatment

    Expression of androgen receptor splice variants in clinical breast cancers

    Get PDF
    Published: November 05, 2015The importance of androgen receptor (AR) signaling is increasingly being recognized in breast cancer, which has elicited clinical trials aimed at assessing the efficacy of androgen deprivation therapy (ADT) for metastatic disease. In prostate cancer, resistance to ADT is frequently associated with the emergence of androgen-independent splice variants of the AR (AR variants, AR-Vs) that lack the LBD and are constitutively active. Women with breast cancer may be prone to a similar phenomenon. Herein, we show that in addition to the prototypical transcript, the AR gene produces a diverse range of AR-V transcripts in primary breast tumors. The most frequently and highly expressed variant was AR-V7 (exons 1/2/3/CE3), which was detectable at the mRNA level in > 50% of all breast cancers and at the protein level in a subset of ERα-negative tumors. Functionally, AR-V7 is a constitutively active and ADT-resistant transcription factor that promotes growth and regulates a transcriptional program distinct from AR in ERα-negative breast cancer cells. Importantly, we provide ex vivo evidence that AR-V7 is upregulated by the AR antagonist enzalutamide in primary breast tumors. These findings have implications for treatment response in the ongoing clinical trials of ADT in breast cancer.Theresa E. Hickey, Connie M. Irvine, Heidi Dvinge, Gerard A. Tarulli, Adrienne R. Hanson, Natalie K. Ryan, Marie A. Pickering, Stephen N. Birrell, Dong Gui Hu, Peter I. Mackenzie, Roslin Russell, Carlos Caldas, Ganesh V. Raj, Scott M. Dehm, Stephen R. Plymate, Robert K. Bradley, Wayne D. Tilley, Luke A. Selt

    Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer.

    Get PDF
    Alteration to the expression and activity of androgen receptor (AR) coregulators in prostate cancer is an important mechanism driving disease progression and therapy resistance. Using a novel proteomic technique, we identified a new AR coregulator, the transcription factor Grainyhead-like 2 (GRHL2), and demonstrated its essential role in the oncogenic AR signaling axis. GRHL2 colocalized with AR in prostate tumors and was frequently amplified and upregulated in prostate cancer. Importantly, GRHL2 maintained AR expression in multiple prostate cancer model systems, was required for cell proliferation, enhanced AR's transcriptional activity, and colocated with AR at specific sites on chromatin to regulate genes relevant to disease progression. GRHL2 is itself an AR-regulated gene, creating a positive feedback loop between the two factors. The link between GRHL2 and AR also applied to constitutively active truncated AR variants (ARV), as GRHL2 interacted with and regulated ARVs and vice versa. These oncogenic functions of GRHL2 were counterbalanced by its ability to suppress epithelial-mesenchymal transition and cell invasion. Mechanistic evidence suggested that AR assisted GRHL2 in maintaining the epithelial phenotype. In summary, this study has identified a new AR coregulator with a multifaceted role in prostate cancer, functioning as an enhancer of the oncogenic AR signaling pathway but also as a suppressor of metastasis-related phenotypes. Cancer Res; 77(13); 3417-30. ©2017 AACR

    The therapeutic effect of clinical trials: understanding placebo response rates in clinical trials – A secondary analysis

    Get PDF
    BACKGROUND AND PURPOSE: Placebo response rates in clinical trials vary considerably and are observed frequently. For new drugs it can be difficult to prove effectiveness superior to placebo. It is unclear what contributes to improvement in the placebo groups. We wanted to clarify, what elements of clinical trials determine placebo variability. METHODS: We analysed a representative sample of 141 published long-term trials (randomized, double-blind, placebo-controlled; duration > 12 weeks) to find out what study characteristics predict placebo response rates in various diseases. Correlational and regression analyses with study characteristics and placebo response rates were carried out. RESULTS: We found a high and significant correlation between placebo and treatment response rate across diseases (r = .78; p < .001). A multiple regression model explained 79% of the variance in placebo variability (F = 59.7; p < 0.0001). Significant predictors are, among others, the duration of the study (beta = .31), the quality of the study (beta = .18), the fact whether a study is a prevention trial (beta = .44), whether dropouts have been documented (beta = -.20), or whether additional treatments have been documented (beta = -.17). Healing rates with placebo are lower in the following diagnoses; neoplasms (beta = -.21), nervous diseases (beta = -.10), substance abuse (beta = -.14). Without prevention trials the amount of variance explained is 42%. CONCLUSION: Medication response rates and placebo response rates in clinical trials are highly correlated. Trial characteristics can explain some portion of the variance in placebo healing rates in RCTs. Placebo response in trials is only partially due to methodological artefacts and only partially dependent on the diagnoses treated
    • …
    corecore