281 research outputs found

    A Specification Environment That Supports the Prototyping of Distributed Systems Using an Object-Oriented Model.

    Get PDF
    High-speed computer networking, interactive service, and incremental growth for computing are some of the motivations for developing a distributed system. Despite the inherent benefits of a distributed system, the development of software support is more difficult for distributed systems than for sequential systems. In either case, difficulties may arise from the communication problems between two groups of people with different backgrounds trying to formulate requirements for the system. This process depends on feedback and may take many iterations to converge. Customers can usually recognize the features they need when they start using a system, which makes prototyping an important tool in requirement analysis. Many prototyping goals, objectives, and approaches are possible. Executable formal specifications are the most attractive ones. This unification of specification and prototyping by having code generators has advantages of providing consistency and prototyping at higher levels of abstraction. Thus, a methodology for executing the DOSL (Distributed Object-based Specification Language) is defined and a prototype system is developed. DOSL is extended as a new formal distributed object-oriented specification language, DOSL-II. DOSL-II is object-oriented rather than object-based, and includes class, inheritance, simple I/O, stream I/O, concurrent I/O, and new constructs for object communication

    COMPARISON OF VACUUM AND HIGH PRESSURE EVAPORATED WOOD HYDROLYZATE FOR ETHANOL PRODUCTION BY REPEATED FED-BATCH USING FLOCCULATING SACCHAROMYCES CEREVISIAE

    Get PDF
    With the aim of increasing the sugars concentration in dilute-acid ligno-cellulosic hydrolyzate to more than 100 g/l for industrial applications, the hydrolyzate from spruce was concentrated about threefold by high-pressure or vacuum evaporations. It was then fermented by repeated fed-batch cultivation using flocculating Saccharomyces cerevisiae with no prior detoxification. The sugars and inhibitors concentrations in the hydrolyzates were compared after the evaporations and also fermenta-tion. The evaporations were carried out either under vacuum (VEH) at 0.5 bar and 80°C or with 1.3 bar pressure (HPEH) at 107.5°C, which resulted in 153.3 and 164.6 g/l total sugars, respectively. No sugar decomposition occurred during either of the evaporations, while more than 96% of furfural and to a lesser extent formic and acetic acids disappeared from the hydrolyzates. However, HMF and levulinic acid remained in the hydrolyzates and were concentrated proportionally. The concentrated hydrolyzates were then fermented in a 4 l bioreactor with 12-22 g/l yeast and 0.14-0.22 h-1 initial dilute rates (ID). More than 84% of the fermentable sugars present in the VEH were fermented by fed-batch cultivation using 12 g/l yeast and initial dilution rate (ID) of 0.22 h-1, and resulted in 0.40±0.01 g/g ethanol from the fermentable sugars in one cycle of fermentation. Fermentation of HPEH was as successful as VEH and resulted in more than 86% of the sugar consumption under the corresponding conditions. By lowering the initial dilution rate to 0.14 h-1, more than 97% of the total fermentable sugars were consumed, and ethanol yield was 0.44±0.01 g/g in one cycle of fermentation. The yeast was able to convert or assimilate HMF, levulinic, acetic, and formic acids by 96, 30, 43, and 74%, respectively

    Developing a framework on supply chain risk mapping, prioritization and engagement

    Get PDF
    Supply chain risk and uncertainty have been drawing much attention in the past few decades. In this thesis, a holistic risk management framework is developed to cope with such risks and uncertainty. The framework assists decision-makers first by detecting internal and/or external risks at early stages. In order to visualize the probability of risks and their impacts, risk-mapping techniques are then proposed. Risk assessment is used to determine risk occurrence and the effects in either quantitative or qualitative terms. Once risks are analyzed, risks relations should be investigated to further adopt risk management strategies for high importance items. Finally, ongoing control of existing and emerging risks requires an appropriate management strategy in order to increase supply chain efficiency. The framework is validated through an application in a small manufacturing company that struggles with outsourcing risk arising from both lead time and demand uncertainties. We first detect uncertainties, then design a simulation model to illustrate the impact of these uncertainties on the company’s performance, where we use the number of lost customers as the company’s performance indicator. Moreover, we conduct an experimental design to investigate risk relation and their impact on the number of lost customers. The experimental design also allows for comparing various supplier’s performance and indicates which supplier would be most beneficial to work with

    A CMOS-based neural implantable optrode for optogenetic stimulation and electrical recording

    No full text
    This paper presents a novel integrated optrode for simultaneous optical stimulation and electrical recording for closed -loop optogenetic neuro-prosthetic applications. The design has been implemented in a commercially available 0.35μm CMOS process. The system includes circuits for controlling the optical stimulations; recording local field potentials (LFPs); and onboard diagnostics. The neural interface has two clusters of stimulation and recording sites. Each stimulation site has a bonding point for connecting a micro light emitting diode (μLED) to deliver light to the targeted area of brain tissue. Each recording site is designed to be post-processed with electrode materials to provide monitoring of neural activity. On-chip diagnostic sensing has been included to provide real-time diagnostics for post-implantation and during normal operation

    Evaluation of the optimal activation parameters for almond shell bio-char production for capacitive deionization

    Get PDF
    A study on a possible new biomass waste to be used as electrode material for capacitive deionization (CDI) processes was performed. Raw almond shells were pyrolyzed at 800, 900 and 1000 °C and then activated through CO2. Carbon activation is used to develop porosity inside the material, increasing the specific surface area and the adsorption performances. In this work, authors tried to correlate the effects of pyrolysis and activation temperature on the ion storage capacity. Results from the desalination tests indicated that the best performance in terms of ion adsorption was obtained when the bio-char was activated at the temperature of 900 °C. Brunauer-Emmet-Teller (BET) and Barret-Joyner-Halenda (BHJ) analysis confirmed the trend of the CDI tests, reporting the highest surface area and share of micropore sites for the 900 °C samples. Salt adsorption capacity was found to be in the range of 13.7 to 19.2 mg g−1

    Characterization of rice husk-based catalyst prepared via conventional and microwave carbonisation

    Get PDF
    © 2017 Elsevier Ltd. Carbon-based sulphonated catalysts (CBSCs) were made from rice husk for biodiesel production. The CBSCs were prepared by microwave (MW) and conventional heating processes from the same feedstock. In both heating systems, the preparation was a two-step process: carbonisation and sulphonation. The aim of this study was to use MW heating to reduce the conventional CBSC preparation time and enhance the -SO 3 H group attachment to the solid catalyst. The biomass based solid acid catalysts from the two systems were characterised and compared in terms of physicochemical properties including: sulphonation, morphology, surface area and structure. The reaction times for MW assisted carbonisation and for sulphonation were significantly reduced compared to the conventional heating system; these were 30 min vs 4 h and 20 min vs 12 h, respectively. The MW prepared catalyst showed higher sulphur content (4.91%) as compared to the conventional catalyst (2.10%). The FTIR analysis showed well distinguished peaks for -SO 3 H for the MW prepared catalyst suggesting the solid catalyst was successfully sulphonated, while these peaks were very weak for the conventional catalyst. SEM analysis revealed a highly porous structure in the MW prepared catalyst, whilst a denser solid resulted for its conventionally prepared analogue, owing to the higher temperatures applied and longer sulphonation time. The surface area for the MW was higher than the conventionally prepared catalysts (43.63 m 2 /g and 37.01 m 2 /g, respectively). The structure of the samples was identified as amorphous for both catalysts as confirmed by XRD. The prepared CBSC is expected to catalyse biodiesel production reaction as evidenced by its total acidity and surface area

    Long-term variation study of fine-mode particle size and regional characteristics using AERONET data

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).To identify the long-term trend of particle size variation, we analyzed aerosol optical depth (AOD, τ) separated as dust (τD) and coarse-(τPC) and fine-pollution particles (τPF) depending on emission sources and size. Ångström exponent values are also identified separately as total and fine-mode particles (αT and αPF). We checked these trends in various ways; (1) first-order linear regression analysis of the annual average values, (2) percent variation using the slope of linear regression method, and (3) a reliability analysis using the Mann–Kendall (MK) test. We selected 17 AERONET sun/sky radiometer sites classified into six regions, i.e., Europe, North Africa, the Middle East, India, Southeast Asia, and Northeast Asia. Although there were regional differences, τ decreased in Europe and Asian regions and increased in the Middle East, India, and North Africa. Values of τPC and τPF, show that aerosol loading caused by non-dust aerosols decreased in Europe and Asia and increased in India. In particular, τPF considerably decreased in Europe and Northeast Asia (95% confidential levels in MK-test), and τPC decreased in Northeast Asia (Z-values for Seoul and Osaka are −2.955 and −2.306, respectively, statistically significant if |z| ≥ 1.96). The decrease in τPC seems to be because of the reduction of primary and anthropogenic emissions from regulation by air quality policies. The meaningful result in this paper is that the particle size became smaller, as seen by values of αT that decreased by −3.30 to −30.47% in Europe, North Africa, and the Middle East because αT provides information on the particle size. Particle size on average became smaller over India and Asian regions considered in our study due to the decrease in coarse particles. In particular, an increase of αPF in most areas shows the probability that the average particle size of fine-mode aerosols became smaller in recent years. We presumed the cause of the increase in αT is because relatively large-sized fine-mode particles were eliminated due to air quality policies.Peer reviewe
    • …
    corecore