12 research outputs found

    Streptomyces tardus sp. nov.: A Slow-Growing Actinobacterium Producing Candicidin, Isolated From Sediments of the Trondheim Fjord

    Get PDF
    Marine environments are home to an extensive number of microorganisms, many of which remain unexplored for taxonomic novelty and functional capabilities. In this study, a slow-growing Streptomyces strain expressing unique genomic and phenotypic characteristics, P38-E01T , was described using a polyphasic taxonomic approach. This strain is part of a collection of over 8,000 marine Actinobacteria isolates collected in the Trondheim fjord of Norway by SINTEF Industry (Trondheim, Norway) and the Norwegian University of Science and Technology (NTNU, Trondheim, Norway). Strain P38-E01T was isolated from the sediments of the Trondheim fjord, and phylogenetic analyses affiliated this strain with the genus Streptomyces, but it was not closely affiliated with other described species. The closest related type strains were Streptomyces daliensis YIM 31724T (98.6%), Streptomyces rimosus subsp. rimosus ATCC 10970T (98.4%), and Streptomyces sclerotialus NRRL ISP-5269T (98.3%). Predominant fatty acids were C16V0 iso, C16V0, and Summed Feature 3, and the predominant respiratory quinones were MK-10(H6), MK-10(H4), and MK9(H4). The main polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, hosphatidylglycerol, and phosphoglycolipid. The whole-cell sugars were glucose, ribose, and in minor amounts, mannose. The cell wall peptidoglycan contained LL-diaminopimelic acid. The draft genome has a size of 6.16 Mb, with a %G C C content of 71.4% and is predicted to contain at least 19 biosynthetic gene clusters encoding diverse secondary metabolites. Strain P38-E01T was found to inhibit the growth of the pathogenic yeast Candida albicans ATCC 90028 and a number of Gram-positive bacterial human and plant pathogens. Metabolites extracted from cultures of P38-E01T were analyzed by mass spectrometry, and it was found that the isolate produced the antifungal compound candicidin. Phenotypic and chemotaxonomic signatures, along with phylogenetic analyses, distinguished isolate P38-E01T from its closest neighbors; thus, this isolate represents a novel species of the genus Streptomyces for which the name Streptomyces tardus sp. nov. (P38-E01T D CCM 9049T D DSM 111582T ) is proposed.publishedVersio

    Biosynthesis of Macrolactam BE-14106 Involves Two Distinct PKS Systems and Amino Acid Processing Enzymes for Generation of the Aminoacyl Starter Unit

    Get PDF
    SummaryBE-14106 is a macrocyclic lactam with an acyl side chain previously identified in a marine-derived Streptomyces sp. The gene cluster for BE-14106 biosynthesis was cloned from a Streptomyces strain newly isolated from marine sediments collected in the Trondheimsfjord (Norway). Bioinformatics and experimental analyses of the genes in the cluster suggested an unusual mechanism for assembly of the molecule. Biosynthesis of the aminoacyl starter apparently involves the concerted action of a distinct polyketide synthase (PKS) system and several enzymes that activate and process an amino acid. The resulting starter unit is loaded onto a second PKS complex, which completes the synthesis of the macrolactam ring. Gene inactivation experiments, enzyme assays with heterologously expressed proteins, and feeding studies supported the proposed model for the biosynthesis and provided new insights into the assembly of macrolactams with acyl side chain

    Isolation and Characterization of the Gene Cluster for Biosynthesis of the Thiopeptide Antibiotic TP-1161 ▿ †

    No full text
    Recently, we isolated a new thiopeptide antibiotic, TP-1161, from the fermentation broth of a marine actinomycete typed as a member of the genus Nocardiopsis. Here we report the identification, isolation, and analysis of the TP-1161 biosynthetic gene cluster from this species. The gene cluster was identified by mining a draft genome sequence using the predicted structural peptide sequence of TP-1161. Functional assignment of a ∼16-kb genomic region revealed 13 open reading frames proposed to constitute the TP-1161 biosynthetic locus. While the typical core set of thiopeptide modification enzymes contains one cyclodehydratase/dehydrogenase pair, paralogous genes predicted to encode additional cyclodehydratases and dehydrogenases were identified. Although attempts at heterologous expression of the TP-1161 gene cluster in Streptomyces coelicolor failed, its identity was confirmed through the targeted gene inactivation in the original host

    New Deferoxamine Glycoconjugates Produced upon Overexpression of Pathway-Specific Regulatory Gene in the Marine Sponge-Derived Streptomyces albus PVA94-07

    No full text
    Activation of silent biosynthetic gene clusters in Streptomyces bacteria via overexpression of cluster-specific regulatory genes is a promising strategy for the discovery of novel bioactive secondary metabolites. This approach was used in an attempt to activate a cryptic gene cluster in a marine sponge-derived Streptomyces albus PVA94-07 presumably governing the biosynthesis of peptide-based secondary metabolites. While no new peptide-based metabolites were detected in the recombinant strain, it was shown to produce at least four new analogues of deferoxamine with additional acyl and sugar moieties, for which chemical structures were fully elucidated. Biological activity tests of two of the new deferoxamine analogues revealed weak activity against Escherichia coli. The gene knockout experiment in the gene cluster targeted for activation, as well as overexpression of certain genes from this cluster did not have an effect on the production of these compounds by the strain overexpressing the regulator. It seems plausible that the production of such compounds is a response to stress imposed by the production of an as-yet unidentified metabolite specified by the cryptic cluster

    Penicillium chrysogenum as a fungal factory for feruloyl esterases

    No full text
    International audiencePlant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown

    Overexpression of Wild-Type Aspartokinase Increases l-Lysine Production in the Thermotolerant Methylotrophic Bacterium Bacillus methanolicus▿

    No full text
    Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar Vmax values (between 47 and 58 μmol/min/mg protein) and Km values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC50], 0.1 mM) and by l-lysine (IC50, 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC50, 4 mM) and by l-lysine (IC50, 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK

    The effects of dietary carbohydrate sources and forms on metabolic response and intestinal microbiota in sea bass juveniles, Dicentrarchus labrax

    No full text
    International audienceThe aim of this work was to investigate the catabolic process of three kinds of dietary carbohydrates in the gut of sea bass juveniles, with the possible contribution of the intestinal microbiota to the nutrition of the host, and the subsequent effects on intermediary metabolism. A first diet contained waxy maize (99% amylopectin), a highly digestible form of starch. A second diet was less quickly digestible due to its high amylose content of resistant starch. Two other diets contained fibre instead of starch, either only cellulose as control, or also other non-starch polysaccharides brought by lupin meal. The effect of the diets on the host confirmed previous results, with the stimulation of glucose storage in the liver in sea bass fed the starchy diets, which caused a significant increase in liver weight, while lupin meal caused an increase in visceral mass. Glycaemia was higher 7 ± 1 h after the last meal in the group fed resistant starch, compared to the other dietary groups, while the fast digestion of waxy maize resulted already in hypertriglyceridemia, possibly due to hepatic neolipogenesis. At the same sampling time, the activity of free amylase was reduced in the intestine of sea bass fed resistant starch, but maltase activity was stimulated in the brush border membranes of enterocytes in the same group, confirming thus the timely digestion of resistant starch. Hepatic mRNA transcripts indicated that glucose metabolism was oriented towards neoglucogenesis by the high-fibre diets, and towards glucose storage by the starchy diets, especially with waxy maize. The diet influenced both faecal and mucosal microbiota, though in different ways, likely due to the interaction with the host. Lupin meal seemed potentially interesting as a source of prebiotic polysaccharides, by modifying the balance between Vibrio spp. and Clostridium sp. Both forms of starch were also partly metabolised by microbiota, resulting in an increased concentration of acetate in the faeces
    corecore