676 research outputs found

    PADAMOT : project overview report

    Get PDF
    Background and relevance to radioactive waste management International consensus confirms that placing radioactive wastes and spent nuclear fuel deep underground in a geological repository is the generally preferred option for their long-term management and disposal. This strategy provides a number of advantages compared to leaving it on or near the Earth’s surface. These advantages come about because, for a well chosen site, the geosphere can provide: • a physical barrier that can negate or buffer against the effects of surface dominated natural disruptive processes such as deep weathering, glaciation, river and marine erosion or flooding, asteroid/comet impact and earthquake shaking etc. • long and slow groundwater return pathways from the facility to the biosphere along which retardation, dilution and dispersion processes may operate to reduce radionuclide concentration in the groundwater. • a stable, and benign geochemical environment to maximise the longevity of the engineered barriers such as the waste containers and backfill in the facility. • a natural radiation shield around the wastes. • a mechanically stable environment in which the facility can be constructed and will afterwards be protected. • an environment which reduces the likelihood of the repository being disturbed by inadvertent human intrusion such as land use changes, construction projects, drilling, quarrying and mining etc. • protection against the effects of deliberate human activities such as vandalism, terrorism and war etc. However, safety considerations for storing and disposing of long-lived radioactive wastes must take into account various scenarios that might affect the ability of the geosphere to provide the functionality listed above. Therefore, in order to provide confidence in the ability of a repository to perform within the deep geological setting at a particular site, a demonstration of geosphere “stability” needs to be made. Stability is defined here to be the capacity of a geological and hydrogeological system to minimise the impact of external influences on the repository environment, or at least to account for them in a manner that would allow their impacts to be evaluated and accounted for in any safety assessments. A repository should be sited where the deep geosphere is a stable host in which the engineered containment can continue to perform according to design and in which the surrounding hydrogeological, geomechanical and geochemical environment will continue to operate as a natural barrier to radionuclide movement towards the biosphere. However, over the long periods of time during which long-lived radioactive wastes will pose a hazard, environmental change at the surface has the potential to disrupt the stability of the geosphere and therefore the causes of environmental change and their potential consequences need to be evaluated. As noted above, environmental change can include processes such as deep weathering, glaciation, river and marine erosion. It can also lead to changes in groundwater boundary conditions through alternating recharge/discharge relationships. One of the key drivers for environmental change is climate variability. The question then arises, how can geosphere stability be assessed with respect to changes in climate? Key issues raised in connection with this are: • What evidence is there that 'going underground' eliminates the extreme conditions that storage on the surface would be subjected to in the long term? • How can the additional stability and safety of the deep geosphere be demonstrated with evidence from the natural system? As a corollary to this, the capacity of repository sites deep underground in stable rock masses to mitigate potential impacts of future climate change on groundwater conditions therefore needs to be tested and demonstrated. To date, generic scenarios for groundwater evolution relating to climate change are currently weakly constrained by data and process understanding. Hence, the possibility of site-specific changes of groundwater conditions in the future can only be assessed and demonstrated by studying groundwater evolution in the past. Stability of groundwater conditions in the past is an indication of future stability, though both the climatic and geological contexts must be taken into account in making such an assertion

    Factors Associated with the Diversification of the Gut Microbial Communities within Chimpanzees from Gombe National Park.

    Get PDF
    The gastrointestinal tract harbors large and diverse populations of bacteria that vary among individuals and within individuals over time. Numerous internal and external factors can influence the contents of these microbial communities, including diet, geography, physiology, and the extent of contact among hosts. To investigate the contributions of such factors to the variation and changes in gut microbial communities, we analyzed the distal gut microbiota of individual chimpanzees from two communities in Gombe National Park, Tanzania. These samples, which were derived from 35 chimpanzees, many of whom have been monitored for multiple years, provide an unusually comprehensive longitudinal depth for individuals of known genetic relationships. Although the composition of the great-ape microbiota has been shown to codiversify with host species, indicating that host genetics and phylogeny have played a major role in its differentiation over evolutionary timescales, the geneaological relationships of individual chimpanzees did not coincide with the similarity in their gut microbial communities. However, the inhabitants from adjacent chimpanzee communities could be distinguished based on the contents of their gut microbiota. Despite the broad similarity of community members, as would be expected from shared diet or interactions, long-term immigrants to a community often harbored the most distinctive gut microbiota, suggesting that individuals retain hallmarks of their previous gut microbial communities for extended periods. This pattern was reinforced in several chimpanzees sampled over long temporal scales, in which the major constituents of the gut microbiota were maintained for nearly a decade

    Altered structural and functional connectivity in late preterm preadolescence: An anatomic seed-based study of resting state networks related to the posteromedial and lateral parietal cortex

    Get PDF
    Objective: Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Methods: Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Results: Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Conclusion: Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing. Copyright

    Iodoarene-Catalyzed Cyclizations of Unsaturated Amides

    Get PDF
    The cyclization of N-alkenylamides catalyzed by iodoarenes under oxidative conditions is presented. Five-, six-, and seven-membered rings with a range of substitutions can be prepared by this route. Preliminary data from the use of chiral iodoarenes as precatalysts show that enantiocontrol is feasible

    Experiences, Opportunities and Challenges of Implementing Task Shifting in Underserved Remote Settings: The Case of Kongwa District, Central Tanzania.

    Get PDF
    Tanzania is experiencing acute shortages of Health Workers (HWs), a situation which has forced health managers, especially in the underserved districts, to hastily cope with health workers' shortages by adopting task shifting. This has however been due to limited options for dealing with the crisis of health personnel. There are on-going discussions in the country on whether to scale up task shifting as one of the strategies for addressing health personnel crisis. However, these discussions are not backed up by rigorous scientific evidence. The aim of this paper is two-fold. Firstly, to describe the current situation of implementing task shifting in the context of acute shortages of health workers and, secondly, to provide a descriptive account of the potential opportunities or benefits and the likely challenges which might ensue as a result of implementing task shifting. We employed in-depth interviews with informants at the district level and supplemented the information with additional interviews with informants at the national level. Interviews focussed on the informants' practical experiences of implementing task shifting in their respective health facilities (district level) and their opinions regarding opportunities and challenges which might be associated with implementation of task shifting practices. At the national level, the main focus was on policy issues related to management of health personnel in the context of implementation of task shifting, in addition to seeking their opinions and perceptions regarding opportunities and challenges of implementing task shifting if formally adopted. Task shifting has been in practice for many years in Tanzania and has been perceived as an inevitable coping mechanism due to limited options for addressing health personnel shortages in the country. Majority of informants had the concern that quality of services is likely to be affected if appropriate policy infrastructures are not in place before formalising tasks shifting. There was also a perception that implementation of task shifting has ensured access to services especially in underserved remote areas. Professional discontent and challenges related to the management of health personnel policies were also perceived as important issues to consider when implementing task shifting practices. Additional resources for additional training and supervisory tasks were also considered important in the implementation of task shifting in order to make it deliver much the same way as it is for conventional modalities of delivering care. Task shifting implementation occurs as an ad hoc coping mechanism to the existing shortages of health workers in many undeserved areas of the country, not just in the study site whose findings are reported in this paper. It is recommended that the most important thing to do now is not to determine whether task shifting is possible or effective but to define the limits of task shifting so as to reach a consensus on where it can have the strongest and most sustainable impact in the delivery of quality health services. Any action towards this end needs to be evidence-based

    Profiles of Disruptive Behavior Across Early Childhood: Contributions of Frustration Reactivity, Physiological Regulation, and Maternal Behavior

    Get PDF
    Disruptive behavior, including aggression, defiance, and temper tantrums, typically peaks in early toddlerhood and decreases by school entry; however, some children do not show this normative decline. The current study examined disruptive behavior in 318 boys and girls at 2, 4, and 5 years of age and frustration reactivity, physiological regulation, and maternal behavior in the laboratory at 2 years of age. A latent profile analysis (LPA) resulted in 4 longitudinal profiles of disruptive behavior, which were differentiated by interactions between reactivity, regulation, and maternal behavior. A high profile was associated with high reactivity combined with high maternal control or low regulation combined with low maternal control. Results are discussed from a developmental psychopathology perspective

    Timeliness of Clinic Attendance is a good predictor of Virological Response and Resistance to Antiretroviral drugs in HIV-infected patients

    Get PDF
    Ensuring long-term adherence to therapy is essential for the success of HIV treatment. As access to viral load monitoring and genotyping is poor in resource-limited settings, a simple tool to monitor adherence is needed. We assessed the relationship between an indicator based on timeliness of clinic attendance and virological response and HIV drug resistance

    Deliverable D4/5: Global climatic characteristics, including vegetation and seasonal cycles over Europe, for snapshots over the next 200,000 years. Work Package 2, Simulation of the future evolution of the biosphere system using the hierarchical strategy. Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal (BIOCLIM)

    Full text link
    The aim of the BIOCLIM project is to develop and present techniques that can be used to develop self-consistent patterns of possible future climate changes over the next million years (climate scenarios), and to demonstrate how these climate scenarios can be used in assessments of the long-term safety of nuclear waste repository sites. Within the project, two strategies are implemented to predict climate change. The first is the hierarchical strategy, in which a hierarchy of climate models is used to investigate the evolution of climate over the period of interest. These models vary from very simple 2-D and threshold models, which simulate interactions between only a few aspects of the earth system, through general circulation models (GCMs) and vegetation models, which simulate in great detail the dynamics and physics of the atmosphere, ocean, and biosphere, to regional models, which focus in particular on the European region and the specific areas of interest. The second strategy is the integrated strategy, in which intermediate complexity climate models are developed, and used to consecutively simulate the development of the earth system over many millennia. Although these models are relatively simple compared to a GCM, they are more advanced than 2D models, and do include physical descriptions of the biosphere, cryosphere, atmosphere and ocean. This deliverable, D4/5, focuses on the hierarchical strategy, and in particular the GCM and vegetation model simulation of possible future climates. Deliverable D3 documented the first step in this strategy. The Louvain-la-Neuve 2-D climate model (LLN-2D) was used to estimate (among other variables) annual mean temperatures and ice volume in the Northern Hemisphere over the next 1 million years. It was driven by the calculated evolution of orbital parameters, and plausible scenarios of CO2 concentration. From the results, 3 future time periods within the next 200,000 years were identified as being extreme, that is either significantly warmer or cooler than the present. The next stage in the hierarchical strategy was to use a GCM and biosphere model, to simulate in more detail these extreme time periods

    Deliverable D3: Global climatic features over the next million years and recommendation for specific situations to be considered. Work Package 2, Simulation of the future evolution of the biosphere system using the hierarchical strategy. Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal (BIOCLIM)

    Full text link
    The BIOCLIM project aims at assessing the possible long-term impacts of climate change on the safety of waste repositories in deep formations using climate simulations of the long-term climate in various European areas. One of the objectives of the project is to develop two strategies for representing sequential climatic changes to the geosphere-biosphere system for different sites over Europe, addressing the time scale of one million years. The results of this work will be interpreted in terms of global or regional changes of climate and of vegetation. The first strategy (hierarchical strategy) will use the full hierarchy of existing climate models (a climate model is a numerical simplified representation of the climate system behaviour and evolution). Simple models (LLN 2-D NH and threshold models; see the description here after) will simulate the overall long-term evolution of the global climate. Their results will then be used as inputs to more complex models (LMD climate models possibly coupled with vegetation models, either SECHIBA or ORCHIDE) and finally climate and vegetation cover will be determined for specific sites at specific times. A second strategy (integrated strategy) will consist in building an integrated climate model, which represents most of the physical mechanisms for studying long-term climatic variations. The results will then be interpreted on a regional scale. This deliverable is the first step of the hierarchical strategy. The purpose of this deliverable is to identify and justify some specific climatic situations amongst different long-term simulations that are of interest for assessing the safety of radioactive waste repository sites and that will be further studied with GCMs (General Circulation Model)
    corecore