728 research outputs found

    Characterization of the Q-switched MOBLAS Laser Transmitter and Its Ranging Performance Relative to a PTM Q-switched System

    Get PDF
    A prototype Q-switched Nd:YAG laser transmitter intended for use in the NASA mobile laser ranging system was subjected to various tests of temporal pulse shape and stability, output energy and stability, beam divergence, and range bias errors. Peak to peak variations in the mean range were as large as 30 cm and drift rates of system bias with time as large as 6 mm per minute of operation were observed. The incorporation of a fast electro-optic cavity dump into the oscillator gave significantly improved results. Reevaluation of the ranging performance after modification showed a reduction in the peak to peak variation in the mean range to the 2 or 3 cm level and a drift rate of system time biases of less than 1 mm per minute of operation. A qualitative physical explanation for the superior performance of cavity dumped lasers is given

    Isolation of microsatellite loci in the Capricorn silvereye, Zosterops lateralis chlorocephalus (Aves : Zosteropidae)

    Get PDF
    The Capricorn silvereye (Zosterops lateralis chlorocephalus ) is ideally suited to investigating the genetic basis of body size evolution. We have isolated and characterized a set of microsatellite markers for this species. Seven out of 11 loci were polymorphic. The number of alleles detected ranged from two to five and observed heterozygosities between 0.12 and 0.67. One locus, ZL49, was found to be sex-linked. This moderate level of diversity is consistent with that expected in an isolated, island population

    The airborne laser ranging system, its capabilities and applications

    Get PDF
    The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions

    Mission description and in-flight operations of ERBE instruments on ERBS, NOAA 9, and NOAA 10 spacecraft

    Get PDF
    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by NASA, and NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the second in a series that describes the ERBE mission, and data processing and validation procedures. This paper describes the spacecraft and instrument operations for the second full year of in-orbit operations, which extend from February 1986 through January 1987. Validation and archival of radiation measurements made by ERBE instruments during this second year of operation were completed in July 1991. This period includes the only time, November 1986 through January 1987, during which all ERBE instruments aboard the ERBE, NOAA 9, and NOAA 10 spacecraft were simultaneously operational. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment

    Telecommunications Act of 1996: 704 of the Act and Protections Afforded the Telecommunications Provider in the Facilities Sitting Context, The

    Get PDF
    The Telecommunications Act of 1996, signed into law by President Clinton in February, addresses, among many other important subjects, some of the technical problems that have arisen from the increasing popularity of mobile communications. This article will provide an overview of the Act and will focus specifically on the protections afforded a telecommunications provider in § 704 of the Act

    Telecommunications Act of 1996: 704 of the Act and Protections Afforded the Telecommunications Provider in the Facilities Sitting Context, The

    Get PDF
    The Telecommunications Act of 1996, signed into law by President Clinton in February, addresses, among many other important subjects, some of the technical problems that have arisen from the increasing popularity of mobile communications. This article will provide an overview of the Act and will focus specifically on the protections afforded a telecommunications provider in § 704 of the Act

    PADAMOT : project overview report

    Get PDF
    Background and relevance to radioactive waste management International consensus confirms that placing radioactive wastes and spent nuclear fuel deep underground in a geological repository is the generally preferred option for their long-term management and disposal. This strategy provides a number of advantages compared to leaving it on or near the Earth’s surface. These advantages come about because, for a well chosen site, the geosphere can provide: • a physical barrier that can negate or buffer against the effects of surface dominated natural disruptive processes such as deep weathering, glaciation, river and marine erosion or flooding, asteroid/comet impact and earthquake shaking etc. • long and slow groundwater return pathways from the facility to the biosphere along which retardation, dilution and dispersion processes may operate to reduce radionuclide concentration in the groundwater. • a stable, and benign geochemical environment to maximise the longevity of the engineered barriers such as the waste containers and backfill in the facility. • a natural radiation shield around the wastes. • a mechanically stable environment in which the facility can be constructed and will afterwards be protected. • an environment which reduces the likelihood of the repository being disturbed by inadvertent human intrusion such as land use changes, construction projects, drilling, quarrying and mining etc. • protection against the effects of deliberate human activities such as vandalism, terrorism and war etc. However, safety considerations for storing and disposing of long-lived radioactive wastes must take into account various scenarios that might affect the ability of the geosphere to provide the functionality listed above. Therefore, in order to provide confidence in the ability of a repository to perform within the deep geological setting at a particular site, a demonstration of geosphere “stability” needs to be made. Stability is defined here to be the capacity of a geological and hydrogeological system to minimise the impact of external influences on the repository environment, or at least to account for them in a manner that would allow their impacts to be evaluated and accounted for in any safety assessments. A repository should be sited where the deep geosphere is a stable host in which the engineered containment can continue to perform according to design and in which the surrounding hydrogeological, geomechanical and geochemical environment will continue to operate as a natural barrier to radionuclide movement towards the biosphere. However, over the long periods of time during which long-lived radioactive wastes will pose a hazard, environmental change at the surface has the potential to disrupt the stability of the geosphere and therefore the causes of environmental change and their potential consequences need to be evaluated. As noted above, environmental change can include processes such as deep weathering, glaciation, river and marine erosion. It can also lead to changes in groundwater boundary conditions through alternating recharge/discharge relationships. One of the key drivers for environmental change is climate variability. The question then arises, how can geosphere stability be assessed with respect to changes in climate? Key issues raised in connection with this are: • What evidence is there that 'going underground' eliminates the extreme conditions that storage on the surface would be subjected to in the long term? • How can the additional stability and safety of the deep geosphere be demonstrated with evidence from the natural system? As a corollary to this, the capacity of repository sites deep underground in stable rock masses to mitigate potential impacts of future climate change on groundwater conditions therefore needs to be tested and demonstrated. To date, generic scenarios for groundwater evolution relating to climate change are currently weakly constrained by data and process understanding. Hence, the possibility of site-specific changes of groundwater conditions in the future can only be assessed and demonstrated by studying groundwater evolution in the past. Stability of groundwater conditions in the past is an indication of future stability, though both the climatic and geological contexts must be taken into account in making such an assertion

    Linkage mapping reveals sex-dimorphic map distances in a passerine bird

    Get PDF
    Linkage maps are lacking for many highly influential model organisms in evolutionary research, including all passerine birds. Consequently, their full potential as research models is severely hampered. Here, we provide a partial linkage map and give novel estimates of sex-specific recombination rates in a passerine bird, the great reed warbler (Acrocephalus arundinaceus). Linkage analysis of genotypic data at 51 autosomal microsatellites and seven markers on the Z-chromosome (one of the sex chromosomes) from an extended pedigree resulted in 12 linkage groups with 2–8 loci. A striking feature of the map was the pronounced sex-dimorphism: males had a substantially lower recombination rate than females, which resulted in a suppressed autosomal map in males (sum of linkage groups: 110.2cM) compared to females (237.2cM; female/male map ratio: 2.15). The sex-specific recombination rates will facilitate the building of a denser linkage map and cast light on hypotheses about sex-specific recombination rates

    Mine Safety Detection System (MSDS)

    Get PDF
    Systems Engineering Project ReportThe search, detection, identification and assessment components of the U.S. Navys organic modular in-stride Mine Countermeasure (MCM) Concept of Operations (CONOPS) have been evaluated for their effectiveness as part of a hypothetical exercise in response to the existence of sea mines placed in the sea lanes of the Strait of Hormuz. The current MCM CONOPS has been shown to be capable of supporting the mine search and detection effort component allocation needs by utilizing two Airborne Mine Countermeasure (AMCM) deployed systems. This adequacy assessment is tenuous. The CONOPS relies heavily upon the Sikorsky MH- 60/S as the sole platform from which the systems operate. This reliance is further compounded by the fact both AMCM systems are not simultaneously compatible on board the MH-60/S. As such, resource availability will challenge the MCM CONOPS as well as the other missions for which the MH-60/S is intended. Additionally, the AMCM CONOPS systems are dependent upon the presence of warfighters in the helicopters above the minefield and as integral participants in the efforts to identify sea mines and to assess their threat level. Model Based System Engineering (MBSE) techniques have been combined with research and stakeholder inputs in an analysis that supports these assertions.mhttp://archive.org/details/minesafetydetect1094517457Approved for public release; distribution is unlimited
    • …
    corecore