11 research outputs found

    Late Eocene 3He and Ir anomalies associated with ordinary chondritic spinels

    Get PDF
    Abstract During the late Eocene there was an enigmatic enhancement in the flux of extraterrestrial material to Earth. Evidence comes from sedimentary 3He records indicating an increased flux of interplanetary dust during ca. 2 Myr, as well as two very large impact structures, Popigai (100 km diameter) and Chesapeake Bay (40–85 km), that formed within 10–20 kyr at the peak of the 3He delivery. The Massignano section in Italy has one of the best sedimentary records of these events, including a well-defined 3He record, an Ir-rich ejecta bed related to the Popigai impact event, and two smaller Ir anomalies. Recently we showed that the Popigai ejecta is associated with a significant enrichment of chromite grains (>63 ÎŒm) with an H-chondritic elemental composition (17 grains in 100 kg of rock). Most likely these grains are unmelted fragments from the impactor. Slightly higher up (ca. 20 cm) in the section, where a small Ir anomaly possibly related to the Chesapeake Bay impact has been measured, we found a weak enrichment in L-chondritic grains (8 grains in 208 kg of rock). Here we report an extended data set increasing the total amount of sediment dissolved in acid and searched for extraterrestrial chromite grains from 658 to 1168 kg. In altogether 760 kg of background sediment from 17 levels over 14 m of strata outside the interval corresponding to the Popigai and Chesapeake Bay impacts, we only found 2 extraterrestrial chromite grains. Both grains have L-chondritic compositions and were found in a 100 kg sample from the ca. 10.25 m level in the section where the second of the smaller Ir anomalies has been reported. A correlation appears to exist between Ir, 3He and chromite from ordinary chondrites. We also report oxygen three-isotope measurements of the extraterrestrial chromite grains associated with the Popigai ejecta and confirm an H-chondritic composition. The new results strengthen our scenario that the upper Eocene 3He and Ir enrichments originate from the asteroid belt rather than the Oort cloud as originally proposed when the 3He anomaly was discovered. The generally low background concentrations of extraterrestrial chromite through the section speak against any major single asteroid breakup event such as in the mid-Ordovician after the break-up of the L-chondrite parent body. Instead the data reconcile with a small, possibly a factor of 2–3, increase in the flux of extraterrestrial material to Earth, but of both H- and L-chondritic composition. We also report the composition of all the 2310 terrestrial chrome spinel grains recovered, and show that their chemical composition indicates a dominantly regional ophiolitic source. Four anomalous chrome spinel grains with high Ti and V concentrations were found in the Popigai ejecta. These grains originate from Siberian Traps basalts in the Popigai crater at the time of impact

    Supplementary material: Chondrules reveal large-scale outward transport of inner Solar System materials in the protoplanetary disk

    Get PDF
    Methods and Petrographic Descriptions of Selected Chondrules. Petrographic data on each of ten Allende and nine Karoonda chondrules includes tomographic imaging (CT) of each chondrule in its entirety; electron microprobe (EMP) x-ray intensity maps of polished sections of chondrule fragments, in major and minor elements for 18 chondrules; and quantitative EMP analyses of olivine, pyroxene, mesostasis, and other phases in each section. Quantitative analyses of many silicate phases have been performed and that data is presented in this supplement. Petrographic calculations using x-ray map data include modal analyses of the silicate portions of five chondrules (cf. Ebel et al., 2008). Measurement of the opaque/silicate volumetric ratio from 3D CT data would be feasible, as would measurement of chondrule diameters and volumes (cf. Ebel and Rivers, 2007). Estimation of the bulk elemental composition of each chondrule would be possible from these data, perhaps as an exercise for the ambitious student. The degree of alteration of each chondrule may be estimated by inspection of BSE images, in which bright (high Z) areas toward rims show post-formation diffusion of Fe into the chondrule. The related paper can be accessed at https://doi.org/10.1073/pnas.2005235117

    Protracted Timescales for Nebular Processing of First-formed Solids in the Solar System

    No full text
    The calcium–aluminum-rich inclusions (CAIs) from chondritic meteorites are the first solids formed in the solar system. Rim formation around CAIs marks a time period in early solar system history when CAIs existed as free-floating objects and had not yet been incorporated into their chondritic parent bodies. The chronological data on these rims are limited. As seen in the limited number of analyzed inclusions, the rims formed nearly contemporaneously (i.e., <300,000 yr after CAI formation) with the host CAIs. Here we present the relative ages of rims around two type B CAIs from NWA 8323 CV3 (oxidized) carbonaceous chondrite using the ^26 Al– ^26 Mg chronometer. Our data indicate that these rims formed ∌2–3 Ma after their host CAIs, most likely as a result of thermal processing in the solar nebula at that time. Our results imply that these CAIs remained as free-floating objects in the solar nebula for this duration. The formation of these rims coincides with the time interval during which the majority of chondrules formed, suggesting that some rims may have formed in transient heating events similar to those that produced most chondrules in the solar nebula. The results reported here additionally bolster recent evidence suggesting that chondritic materials accreted to form chondrite parent bodies later than the early-formed planetary embryos, and after the primary heat source, most likely ^26 Al, had mostly decayed away

    Meteorite flux to Earth in the Early Cretaceous as reconstructed from sediment-dispersed extraterrestrial spinels

    Get PDF
    We show that Earth’s sedimentary strata can provide a record of the collisional evolution of the asteroid belt. From 1652 kg of pelagic Maiolica limestone of Berriasian–Hauterivian age from Italy, we recovered 108 extraterrestrial spinel grains (32–250 ÎŒm) representing relict minerals from coarse micrometeorites. Elemental and three oxygen isotope analyses were used to characterize the grains, providing a first-order estimate of the major types of asteroids delivering material at the time. Comparisons were made with meteorite-flux time “windows” in the Ordovician before and after the L-chondrite parent-body breakup. In the Early Cretaceous, ∌80% of the extraterrestrial spinels originated from ordinary chondrites. The ratios between the three groups of ordinary chondrites, H, L, LL, appear similar to the present, ∌1:1:0.2, but differ significantly from Ordovician ratios. We found no signs of a hypothesized Baptistina LL-chondrite breakup event. About 10% of the grains in the Maiolica originate from achondritic meteorite types that are very rare (<1%) on Earth today, but that were even more common in the Ordovician. Because most meteorite groups have lower spinel content than the ordinary chondrites, our data indicate that the latter did not dominate the flux during the Early Cretaceous to the same extent as today. Based on studies of three windows in deep time, we argue that there may have been a gradual long-term (a few hundred million years) turnover in the meteorite flux from dominance of achondrites in the early Phanerozoic to ordinary chondrites in the late Phanerozoic, interrupted by short-term (a few million years) meteorite cascades from single asteroid breakup events
    corecore