189 research outputs found

    Deletion of the trpc4 gene and its role in simple and complex strategic learning

    Get PDF
    The TRPC4 ion channel is expressed extensively in corticolimbic and a subpopulation of midbrain dopamine neurons. While TRPC4 knockout (KO) rats exhibit reduced sociability and social exploration, little is known about the role of TRPC4 in motivation and learning. To identify a function for TRPC4 channels in learning processes  we tested TRPC4 KO and normal wild type (WT) rats. TRPC4 KO and WT rats exhibited no differences in Y-­maze learning or simple discrimination learning. Furthermore, on a more complex serial reversal shift task designed  to assess strategic learning where the reward and non-­reward cues were repeatedly reversed between training sessions both TRPC4 KO and WT rats   performed equally well. Finally, we found no   performance differences when using a conditional reversal shift task where a tone signals the reversal of reward and non-reward cues within sessions. These data suggest that although TRPC4 channels may play a role in social interaction/anxiety  they exert a minimal role in simple and complex strategic learning

    Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol

    Get PDF
    Chronic exposure (24โ€“72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic รŸ-cells and in the clonal pancreatic รŸ-cell line INS-1 832/13. MOG (25โ€“400 ยตM) stimulated basal insulin secretion from รŸ-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant รŸ-hydroxybutyrate (รŸ-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS

    Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol

    Get PDF
    Chronic exposure (24โ€“72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic รŸ-cells and in the clonal pancreatic รŸ-cell line INS-1 832/13. MOG (25โ€“400 ยตM) stimulated basal insulin secretion from รŸ-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant รŸ-hydroxybutyrate (รŸ-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS

    Magnetic Tower Outflows from a Radial Wire Array Z-pinch

    Full text link
    We present the first results of high energy density laboratory astrophysics experiments which explore the evolution of collimated outflows and jets driven by a toroidal magnetic field. The experiments are scalable to astrophysical flows in that critical dimensionless numbers such as the Mach number, the plasma beta and the magnetic Reynolds number are all in the astrophysically appropriate ranges. Our experiments use the MAGPIE pulsed power machine and allow us to explore the role of magnetic pressure in creating and collimating the outflow as well as showing the creation of a central jet within the broader outflow cavity. We show that currents flow along this jet and we observe its collimation to be enhanced by the additional hoop stresses associated with the generated toroidal field. Although at later times the jet column is observed to go unstable, the jet retains its collimation. We also present simulations of the magnetic jet evolution using our two-dimensional resistive magneto-hydrodynamic (MHD) laboratory code. We conclude with a discussion of the astrophysical relevance of the experiments and of the stability properties of the jet.Comment: Accepted by MNRAS. 17 pages without figures. Full version with figures can be found at http://www.pas.rochester.edu/~afrank/labastro/MF230rv.pd

    Analysis of radially resolved spectra and potential for lasing in Mo wire array Z pinches

    Get PDF
    Measurements of radially resolved L-shell Mo spectra from wire array pinches on Sandia's Z generator are presented and analyzed using a collisional-radiative model. The spectra indicate large radial gradients in density over the {approx}8-mm-diameter plasma column, but only the emission from the {approx}2 mm central region of the pinch appears to be influenced by opacity. Population inversions and significant gain factors for 100-200 {angstrom} transitions in Ne-like Mo are predicted to exist at the diagnosed plasma conditions

    Fast resistive bolometry

    Get PDF
    Resistive bolometry is an accurate, robust, spectrally broadband technique for measuring absolute x-ray fluence and flux. Bolometry is an independent technique for x-ray measurements that is based on a different set of physical properties than other diagnostics such as x-ray diodes, photoconducting detectors, and P-I-N diodes. Bolometers use the temperature-driven change in element resistivity to determine the total deposited energy. The calibration of such a device is based on fundamental material properties and its physical dimensions. We describe the use of nickel and gold bolometers to measure x rays generated by high-power z pinches on Sandia's Saturn and Z accelerators. The Sandia bolometer design described herein has a pulse response of {approximately}1 ns. We describe in detail the fabrication, fielding, and data analysis issues leading to highly accurate x-ray measurements. The fundamental accuracy of resistive bolometry will be discussed

    Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation

    Get PDF
    Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes
    • โ€ฆ
    corecore