2,269 research outputs found
Characteristic Angles in the Wetting of an Angular Region: Deposit Growth
As was shown in an earlier paper [1], solids dispersed in a drying drop
migrate to the (pinned) contact line. This migration is caused by outward flows
driven by the loss of the solvent due to evaporation and by geometrical
constraint that the drop maintains an equilibrium surface shape with a fixed
boundary. Here, in continuation of our earlier paper [2], we theoretically
investigate the evaporation rate, the flow field and the rate of growth of the
deposit patterns in a drop over an angular sector on a plane substrate.
Asymptotic power laws near the vertex (as distance to the vertex goes to zero)
are obtained. A hydrodynamic model of fluid flow near the singularity of the
vertex is developed and the velocity field is obtained. The rate of the deposit
growth near the contact line is found in two time regimes. The deposited mass
falls off as a weak power Gamma of distance close to the vertex and as a
stronger power Beta of distance further from the vertex. The power Gamma
depends only slightly on the opening angle Alpha and stays between roughly -1/3
and 0. The power Beta varies from -1 to 0 as the opening angle increases from 0
to 180 degrees. At a given distance from the vertex, the deposited mass grows
faster and faster with time, with the greatest increase in the growth rate
occurring at the early stages of the drying process.Comment: v1: 36 pages, 21 figures, LaTeX; submitted to Physical Review E; v2:
minor additions to Abstract and Introductio
Oscillatory fracture path in thin elastic sheet
We report a novel mode of oscillatory crack propagation when a cutting tip is
driven through a thin brittle polymer film. The phenomenon is so robust that it
can easily be reproduced at hand (using CD packaging material for example).
Careful experiments show that the amplitude and wavelength of the oscillatory
crack path scale lineraly with the width of the cutting tip over a wide range
of lenghtscales but are independant of the width of thje sheet and the cutting
speed. A simple geometric model is presented, which provides a simple but
thorough interpretation of the oscillations.Comment: 6 pages, submitted to Comptes Rendus Academie des Sciences. Movies
available at http://www.lmm.jussieu.fr/platefractur
A mathematical model of the evaporation of a thin sessile liquid droplet : comparison between experiment and theory
A mathematical model for the quasi-steady diffusion-limited evaporation of a thin axisymmetric sessile droplet of liquid with a pinned contact line is formulated and solved. The model generalises the theoretical model proposed by Deegan et al. [Contact line deposits in an evaporating drop, Phys. Rev. E, 62 (2000) 756-765] to include the effect of evaporative cooling on the saturation concentration of vapour at the free surface of the droplet, and the dependence of the coefficient of diffusion of vapour in the atmosphere on the atmospheric pressure. The predictions of the model are in good qualitative, and in some cases also quantitative, agreement with recent experimental results. In particular, they capture the experimentally observed dependence of the total evaporation rate on the thermal conductivities of the liquid and the substrate, and on the atmospheric pressure
Universities: The Fallen Angels of Bayh-Dole?
The Bayh-Dole Act of 1980 established a new default rule that allowed nonprofit organizations and small businesses to own, as a routine matter, patents on inventions resulting from research sponsored by the federal government. Although universities helped get the Bayh-Dole Act through Congress, the primary goal, as reflected in the recitals at the beginning of the new statute, was not to benefit universities but to promote the commercial development and utilization of federally funded inventions. In the years since the passage of the Bayh-Dole Act, universities seem to have lost sight of this distinction. Their behavior as patent seekers, patent enforcers, and patent policy stakeholders often seems to work against the commercialization goals of the Bayh-Dole Act and is difficult to explain or justify on any basis other than the pursuit of revenue
George Herbert Mead And Social Reform: His Work And Writings
There are two popular myths concerning the eminent philosopher and social psychologist George Herbert Mead: that he published little during his lifetime and that Mind, Self, and Society is his most important sociological work. This misrepresentation of Mead\u27s contributions is partially grounded in the neglect of his work and writings on social reform. The misrepresentation of the significance of the almost seventy articles Mead wrote during his lifetime distorts the meaning of his concepts and has profound implications for symbolic interactionists who claim Mead as one of their founding fathers
The Inverse Shapley Value Problem
For a weighted voting scheme used by voters to choose between two
candidates, the \emph{Shapley-Shubik Indices} (or {\em Shapley values}) of
provide a measure of how much control each voter can exert over the overall
outcome of the vote. Shapley-Shubik indices were introduced by Lloyd Shapley
and Martin Shubik in 1954 \cite{SS54} and are widely studied in social choice
theory as a measure of the "influence" of voters. The \emph{Inverse Shapley
Value Problem} is the problem of designing a weighted voting scheme which
(approximately) achieves a desired input vector of values for the
Shapley-Shubik indices. Despite much interest in this problem no provably
correct and efficient algorithm was known prior to our work.
We give the first efficient algorithm with provable performance guarantees
for the Inverse Shapley Value Problem. For any constant \eps > 0 our
algorithm runs in fixed poly time (the degree of the polynomial is
independent of \eps) and has the following performance guarantee: given as
input a vector of desired Shapley values, if any "reasonable" weighted voting
scheme (roughly, one in which the threshold is not too skewed) approximately
matches the desired vector of values to within some small error, then our
algorithm explicitly outputs a weighted voting scheme that achieves this vector
of Shapley values to within error \eps. If there is a "reasonable" voting
scheme in which all voting weights are integers at most \poly(n) that
approximately achieves the desired Shapley values, then our algorithm runs in
time \poly(n) and outputs a weighted voting scheme that achieves the target
vector of Shapley values to within error $\eps=n^{-1/8}.
The strong influence of substrate conductivity on droplet evaporation
We report the results of physical experiments that demonstrate the strong influence of the thermal conductivity of the substrate on the evaporation of a pinned droplet. We show that this behaviour can be captured by a mathematical model including the variation of the saturation concentration with temperature, and hence coupling the problems for the vapour concentration in the atmosphere and the temperature in the liquid and the substrate. Furthermore, we show that including two ad hoc improvements to the model, namely a Newton's law of cooling on the unwetted surface of the substrate and the buoyancy of water vapour in the atmosphere, give excellent quantitative agreement for all of the combinations of liquid and substrate considered
The continuing saga of patents and non-invasive prenatal testing
This is the final version. Available on open access from Wiley via the DOI in this recordObjective: This paper examines the IP landscape for NIPT in three key regions: USA; Europe, with particular focus on the UK, and Australia.
Method: We explore the patent law issues against the commercial and healthcare environment in these regions, and consider the implications for development and implementation of NIPT.
Results: There are many patents held by many parties internationally, with litigation over these patents ongoing in many countries. Importantly, there are significant international differences in patent law, with patents invalidated in the USA that remain valid in Europe. Despite the many patents and ongoing litigation, there are multiple providers of testing internationally, and patents do not appear to be preventing patient access to testing for those who can pay out of pocket.
Conclusion:
The patent situation in NIPT remains in a state of flux, with uncertainty about how patent rights will be conferred in different jurisdictions, and how patents might affect clinical access. However, patents are unlikely to result in a monopoly for a single provider, with several providers and testing technologies, including both public and private sector entities, likely to remain engaged in delivery of NIPT. However, the effects on access in public healthcare systems are more complex and need to be monitored.Economic and Social Research Council (ESRC)Australian Research CouncilNational Institute for Health Research (NIHR
Saltmarsh plant responses to eutrophication
In saltmarsh plant communities, bottom-up pressure from nutrient enrichment is predicted to increase productivity, alter community structure, decrease biodiversity, and alter ecosystem functioning. Previous work supporting these predictions has been based largely on short-term, plot-level (e.g., 1-300 m(2)) studies, which may miss landscape-level phenomena that drive ecosystem-level responses. We implemented an ecosystem-scale, nine-year nutrient experiment to examine how saltmarsh plants respond to simulated conditions of coastal eutrophication. Our study differed from previous saltmarsh enrichment studies in that we applied realistic concentrations of nitrate (70-100 mu M NO3-), the most common form of coastal nutrient enrichment, via tidal water at the ecosystem scale (similar to 60,000 m(2) creeksheds). Our enrichments added a total of 1,700 kg N.creek(-1).yr(-1), which increased N loading 10-fold vs. reference creeks (low-marsh, 171 g N.m(-2).yr(-1); high-marsh, 19 g N.m(-2).yr(-1)). Nutrients increased the shoot mass and height of low marsh, tall Spartina alterniflora; however, declines in stem density resulted in no consistent increase in aboveground biomass. High-marsh plants S. patens and stunted S. alterniflora did not respond consistently to enrichment. Nutrient enrichment did not shift community structure, contrary to the prediction of nutrient-driven dominance of S. alterniflora and Distichlis spicata over S. patens. Our mild responses may differ from the results of previous studies for a number of reasons. First, the limited response of the high marsh may be explained by loading rates orders of magnitude lower than previous work. Low loading rates in the high marsh reflect infrequent inundation, arguing that inundation patterns must be considered when predicting responses to estuarine eutrophication. Additionally, we applied nitrate instead of the typically used ammonium, which is energetically favored over nitrate for plant uptake. Thus, the form of nitrogen enrichment used, not just N-load, may be important in predicting plant responses. Overall, our results suggest that when coastal eutrophication is dominated by nitrate and delivered via flooding tidal water, aboveground saltmarsh plant responses may be limited despite moderate-to-high water-column N concentrations. Furthermore, we argue that the methodological limitations of nutrient studies must be considered when using results to inform management decisions about wetlands
- …