75 research outputs found

    Cultivating Uncultured Bacteria from Northern Wetlands: Knowledge Gained and Remaining Gaps

    Get PDF
    Northern wetlands play a key role in the global carbon budget, particularly in the budgets of the greenhouse gas methane. These ecosystems also determine the hydrology of northern rivers and represent one of the largest reservoirs of fresh water in the Northern Hemisphere. Sphagnum-dominated peat bogs and fens are the most extensive types of northern wetlands. In comparison to many other terrestrial ecosystems, the bacterial diversity in Sphagnum-dominated wetlands remains largely unexplored. As demonstrated by cultivation-independent studies, a large proportion of the indigenous microbial communities in these acidic, cold, nutrient-poor, and water-saturated environments is composed of as-yet-uncultivated bacteria with unknown physiologies. Most of them are slow-growing, oligotrophic microorganisms that are difficult to isolate and to manipulate in the laboratory. Yet, significant breakthroughs in cultivation of these elusive organisms have been made during the last decade. This article describes the major prerequisites for successful cultivation of peat-inhabiting microbes, gives an overview of the currently captured bacterial diversity from northern wetlands and discusses the unique characteristics of the newly discovered organisms

    Abundance, Diversity, and Depth Distribution of Planctomycetes in Acidic Northern Wetlands

    Get PDF
    Members of the bacterial phylum Planctomycetes inhabit various aquatic and terrestrial environments. In this study, fluorescence in situ hybridization (FISH) was applied to assess the abundance and depth distribution of these bacteria in nine different acidic wetlands of Northern Russia. Planctomycetes were most abundant in the oxic part of the wetland profiles. The respective cell numbers were in the range 1.1–6.7 × 107 cells g−1 of wet peat, comprising 2–14% of total bacterial cells, and displaying linear correlation to the peat water pH. Most peatland sites showed a sharp decline of planctomycete abundance with depth, while in two particular sites this decline was followed by a second population maximum in an anoxic part of the bog profile. Oxic peat layers were dominated by representatives of the Isosphaera–Singulisphaera group, while anoxic peat was inhabited mostly by Zavarzinella- and Pirellula-like planctomycetes. Phylogenetically related bacteria of the candidate division OP3 were detected in both oxic and anoxic peat layers with cell densities of 0.6–4.6 × 106 cells g−1 of wet peat

    Draft genome sequence of Methyloferula stellata AR4, an obligate methanotroph possessing only a soluble methane monooxygenase

    Get PDF
    Methyloferula stellata AR4 is an aerobic acidophilic methanotroph, which, in contrast to most known methanotrophs but similar to Methylocella spp., possesses only a soluble methane monooxygenase. However, it differs from Methylocella spp. by its inability to grow on multicarbon substrates. Here, we report the draft genome sequence of this bacterium

    Telmatocola sphagniphila gen. nov., sp. nov., a Novel Dendriform Planctomycete from Northern Wetlands

    Get PDF
    Members of the phylum Planctomycetes are common inhabitants of northern wetlands. We used barcoded pyrosequencing to survey bacterial diversity in an acidic (pH 4.0) Sphagnum peat sampled from the peat bog Obukhovskoye, European North Russia. A total of 21189 bacterial 16S rRNA gene sequences were obtained, of which 1081 reads (5.1%) belonged to the Planctomycetes. Two-thirds of these sequences affiliated with planctomycete groups for which characterized representatives have not yet been available. Here, we describe two organisms from one of these previously uncultivated planctomycete groups. One isolate, strain OB3, was obtained from the peat sample used in our molecular study, while another strain, SP2T (=DSM 23888T = VKM B-2710T), was isolated from the peat bog Staroselsky moss. Both isolates are represented by aerobic, budding, pink-pigmented, non-motile, spherical cells that are arranged in unusual, dendriform-like structures during growth on solid media. These bacteria are moderately acidophilic and mesophilic, capable of growth at pH 4.0–7.0 (optimum pH 5.0–5.5) and at 6–30°C (optimum 20–26°C). The preferred growth substrates are various heteropolysaccharides and sugars, the latter being utilized only if provided in low concentrations (≤0.025%). In contrast to other described planctomycetes, strains SP2T and OB3 possess weak cellulolytic potential. The major fatty acids are C16:1ω5c, C18:1ω5c, C16:0, and C18:0. Characteristic lipids are the n-C31 polyunsaturated alkene (9–10 double bonds) and C30:1/C32:1 (ω-1) hydroxy fatty acids. The G + C content of the DNA is 58.5–59.0 mol%. Strains SP2T and OB3 share identical 16S rRNA gene sequences, which exhibit only 86 and 87% similarity to those of Gemmata obscuriglobus and Zavarzinella formosa. Based on the characteristics reported here, we propose to classify these novel planctomycetes as representatives of a novel genus and species, Telmatocola sphagniphila gen. nov., sp. nov

    Judicial Opinions 123-127

    Get PDF
    Opinion 123 places the epithet of the name Aeromonas punctata on the list of rejected epithets and clarifies the citation of authors of selected names within the genus Aeromonas. Opinion 124 denies the request to place Borreliella on the list of rejected names because the request is based on a misinterpretation of the Code, which is clarified. There are alternative ways to solve the perceived problem. Opinion 125 denies the request to place Lactobacillus fornicalis on the list of rejected names because the provided information does not yield a reason for rejection. Opinion 126 denies the request to place Prolinoborus and Prolinoborus fasciculus on the list of rejected names because a relevant type strain deposit was not examined. Opinion 127 grants the request to assign the strain deposited as ATCC 4720 as the type strain of Agrobacterium tumefaciens, thereby cor-recting the Approved Lists. These Opinions were ratified by the voting members of the International Committee on Systematics of Prokaryotes

    Methylotetracoccus oryzae Strain C50C1 Is a Novel Type Ib Gammaproteobacterial Methanotroph Adapted to Freshwater Environments

    Get PDF
    Methane-oxidizing microorganisms perform an important role in reducing emissions of the greenhouse gas methane to the atmosphere. To date, known bacterial methanotrophs belong to the Proteobacteria, Verrucomicrobia, and NC10 phyla. Within the Proteobacteria phylum, they can be divided into type Ia, type Ib, and type II methanotrophs. Type Ia and type II are well represented by isolates. Contrastingly, the vast majority of type Ib methanotrophs have not been able to be cultivated so far. Here, we compared the distributions of type Ib lineages in different environments. Whereas the cultivated type Ib methanotrophs (Methylococcus and Methylocaldum) are found in landfill and upland soils, lineages that are not represented by isolates are mostly dominant in freshwater environments, such as paddy fields and lake sediments. Thus, we observed a clear niche differentiation within type Ib methanotrophs. Our subsequent isolation attempts resulted in obtaining a pure culture of a novel type Ib methanotroph, tentatively named “Methylotetracoccus oryzae” C50C1. Strain C50C1 was further characterized to be an obligate methanotroph, containing C_(16:1)ω9c as the major membrane phospholipid fatty acid, which has not been found in other methanotrophs. Genome analysis of strain C50C1 showed the presence of two pmoCAB operon copies and XoxF5-type methanol dehydrogenase in addition to MxaFI. The genome also contained genes involved in nitrogen and sulfur cycling, but it remains to be demonstrated if and how these help this type Ib methanotroph to adapt to fluctuating environmental conditions in freshwater ecosystems

    Complete Genome Sequence of the Aerobic Facultative Methanotroph Methylocella tundrae Strain T4

    Get PDF
    Methylocella tundrae T4T is a facultative aerobic methanotroph which was isolated from an acidic tundra wetland and possesses only a soluble methane monooxygenase. The complete genome, which includes two megaplasmids, was sequenced using a combination of Illumina and Nanopore technologies. One of the megaplasmids carries a propane monooxygenase gene cluster
    corecore