788 research outputs found
Nonsense mutations in alpha-II spectrin in three families with juvenile onset hereditary motor neuropathy
Distal hereditary motor neuropathies are a rare subgroup of inherited peripheral neuropathies hallmarked by a length-dependent axonal degeneration of lower motor neurons without significant involvement of sensory neurons. We identified patients with heterozygous nonsense mutations in the alpha II-spectrin gene, SPTAN1, in three separate dominant hereditary motor neuropathy families via next-generation sequencing. Variable penetrance was noted for these mutations in two of three families, and phenotype severity differs greatly between patients. The mutant mRNA containing nonsense mutations is broken down by nonsense-mediated decay and leads to reduced protein levels in patient cells. Previously, dominant-negative alpha II-spectrin gene mutations were described as causal in a spectrum of epilepsy phenotypes
EM Calorimeters for SoLID at Jefferson Lab
Several approved experiments at Jefferson Lab for the 12 GeV era will use the proposed Solenoid Large Intensity Device (SoLID) spectrometer. Two EM calorimeters with a total area of 15 square meters are required for electron identification and electron-pion separation. The challenge is to build calorimeters that can withstand high radiation doses in high magnetic field region and bring photon signals to low field region for readout. Several types of calorimeters were considered and we are favoring Shashlyk type as a result of balancing performance and cost. Our preliminary design and simulation of SoLID EM calorimeters are presented
Cerenkov-like radiation in a binary Schr{\"o}dinger flow past an obstacle
We consider the dynamics of two coupled miscible Bose-Einstein condensates,
when an obstacle is dragged through them. The existence of two different speeds
of sound provides the possibility for three dynamical regimes: when both
components are subcritical, we do not observe nucleation of coherent
structures; when both components are supercritical they both form dark solitons
in one dimension (1D) and vortices or rotating vortex dipoles in two dimensions
(2D); in the intermediate regime, we observe the nucleation of a structure in
the form of a dark-antidark soliton in 1D; subcritical component; the 2D analog
of such a structure, a vortex-lump, is also observed.Comment: 4 pages, 4 figures, submitted to Phys Rev
Beam-Target Double-Spin Asymmetry A(LT) in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized He-3 Target at 1.4 \u3c Q(2) \u3c 2.7 GeV2
We report the first measurement of the double-spin asymmetry A(LT) for charged pion electroproduction in semi-inclusive deep-inelastic electron scattering on a transversely polarized He-3 target. The kinematics focused on the valence quark region, 0.16 \u3c x \u3c 0.35 with 1.4 \u3c Q(2) \u3c 2.7 GeV2. The corresponding neutron A(LT) asymmetries were extracted from the measured He-3 asymmetries and proton over He-3 cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function g(1T)(q) and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for pi(-) production on He-3 and the neutron, while our pi(+) asymmetries are consistent with zero
Climatic and palaeoceanographic changes during the Pliensbachian (Early Jurassic) 2 inferred from clay mineralogy and stable isotope (C-O) geochemistry (NW Europe)
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Available online 17 January 2017The Early Jurassic was broadly a greenhouse climate period that was punctuated by short
warm and cold climatic events, positive and negative excursions of carbon isotopes, and
episodes of enhanced organic matter burial. Clay minerals from Pliensbachian sediments
recovered from two boreholes in the Paris Basin, are used here as proxies of detrital supplies,
runoff conditions, and palaeoceanographic changes. The combined use of these minerals with
ACCEPTED MANUSCRIPT
ACCEPTED MANUSCRIPT
stable isotope data (C-O) from bulk carbonates and organic matter allows palaeoclimatic
reconstructions to be refined for the Pliensbachian. Kaolinite/illite ratio is discussed as a
reliable proxy of the hydrological cycle and runoff from landmasses. Three periods of
enhanced runoff are recognised within the Pliensbachian. The first one at the SinemurianPliensbachian
transition shows a significant increase of kaolinite concomitant with the
negative carbon isotope excursion at the so-called Sinemurian Pliensbachian Boundary Event
(SPBE). The Early/Late Pliensbachian transition was also characterised by more humid
conditions. This warm interval is associated with a major change in oceanic circulation during
the Davoei Zone, likely triggered by sea-level rise; the newly created palaeogeography,
notably the flooding of the London-Brabant Massif, allowed boreal detrital supplies, including
kaolinite and chlorite, to be exported to the Paris Basin. The last event of enhanced runoff
occurred during the late Pliensbachian (Subdonosus Subzone of the Margaritatus Zone),
which occurred also during a warm period, favouring organic matter production and
preservation. Our study highlights the major role of the London Brabant Massif in influencing
oceanic circulation of the NW European area, as a topographic barrier (emerged lands) during
periods of lowstand sea-level and its flooding during period of high sea-level. This massif was
the unique source of smectite in the Paris Basin. Two episodes of smectite-rich sedimentation
(‘smectite events’), coincide with regressive intervals, indicating emersion of the London
Brabant Massif and thus suggesting that an amplitude of sea-level change high enough to be
linked to glacio-eustasy. This mechanism is consistent with sedimentological and
geochemical evidences of continental ice growth notably during the Latest Pliensbachian
(Spinatum Zone), and possibly during the Early Pliensbachian (late Jamesoni/early Ibex
Zones).The study was supported by the “Agence Nationale pour la Gestion des Déchets Radioactifs” (Andra––French National Radioactive Waste Management Agency)
Measurement of the Neutron Radius of Pb-208 through Parity Violation in Electron Scattering
We report the first measurement of the parity-violating asymmetry A(PV) in the elastic scattering of polarized electrons from Pb-208. APV is sensitive to the radius of the neutron distribution (R-n). The result A(PV) = 0.656 +/- 0.060(stat) +/- 0.014(syst) ppm corresponds to a difference between the radii of the neutron and proton distributions R-n - R-p = 0.33(-0.18)(+0.16) fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus
Analysis of new control applications
This document reports the results of the activities performed during the first year of the CRUTIAL project, within the Work Package 1 "Identification and description of Control System Scenarios". It represents the outcome of the analysis of new control applications in the Power
System and the identification of critical control system scenarios to be explored by the CRUTIAL project
Modulated Amplitude Waves in Bose-Einstein Condensates
We analyze spatio-temporal structures in the Gross-Pitaevskii equation to
study the dynamics of quasi-one-dimensional Bose-Einstein condensates (BECs)
with mean-field interactions. A coherent structure ansatz yields a
parametrically forced nonlinear oscillator, to which we apply Lindstedt's
method and multiple-scale perturbation theory to determine the dependence of
the intensity of periodic orbits (``modulated amplitude waves'') on their wave
number. We explore BEC band structure in detail using Hamiltonian perturbation
theory and supporting numerical simulations.Comment: 5 pages, 4 figs, revtex, final form of paper, to appear in PRE
(forgot to include \bibliography command in last update, so this is a
correction of that; the bibliography is hence present again
The Unified Method: I Non-Linearizable Problems on the Half-Line
Boundary value problems for integrable nonlinear evolution PDEs formulated on
the half-line can be analyzed by the unified method introduced by one of the
authors and used extensively in the literature. The implementation of this
general method to this particular class of problems yields the solution in
terms of the unique solution of a matrix Riemann-Hilbert problem formulated in
the complex -plane (the Fourier plane), which has a jump matrix with
explicit -dependence involving four scalar functions of , called
spectral functions. Two of these functions depend on the initial data, whereas
the other two depend on all boundary values. The most difficult step of the new
method is the characterization of the latter two spectral functions in terms of
the given initial and boundary data, i.e. the elimination of the unknown
boundary values. For certain boundary conditions, called linearizable, this can
be achieved simply using algebraic manipulations. Here, we present an effective
characterization of the spectral functions in terms of the given initial and
boundary data for the general case of non-linearizable boundary conditions.
This characterization is based on the analysis of the so-called global
relation, on the analysis of the equations obtained from the global relation
via certain transformations leaving the dispersion relation of the associated
linearized PDE invariant, and on the computation of the large asymptotics
of the eigenfunctions defining the relevant spectral functions.Comment: 39 page
Recommended from our members
Pathogenic variants in the AFG3L2 proteolytic domain cause SCA28 through haploinsufficiency and proteostatic stress-driven OMA1 activation
Background: Spinocerebellar ataxia type 28 (SCA28) is a dominantly inherited neurodegenerative disease caused by pathogenic variants in AFG3L2. The AFG3L2 protein is a subunit of mitochondrial m-AAA complexes involved in protein quality control. Objective of this study was to determine the molecular mechanisms of SCA28, which has eluded characterisation to date. Methods: We derived SCA28 patient fibroblasts carrying different pathogenic variants in the AFG3L2 proteolytic domain (missense: the newly identified p.F664S and p.M666T, p.G671R, p.Y689H and a truncating frameshift p.L556fs) and analysed multiple aspects of mitochondrial physiology. As reference of residual m-AAA activity, we included SPAX5 patient fibroblasts with homozygous p.Y616C pathogenic variant, AFG3L2 +/\ue2 ' HEK293 T cells by CRISPR/Cas9-genome editing and Afg3l2 \ue2 '/\ue2 ' murine fibroblasts. Results: We found that SCA28 cells carrying missense changes have normal levels of assembled m-AAA complexes, while the cells with a truncating pathogenic variant had only half of this amount. We disclosed inefficient mitochondrial fusion in SCA28 cells caused by increased OPA1 processing operated by hyperactivated OMA1. Notably, we found altered mitochondrial proteostasis to be the trigger of OMA1 activation in SCA28 cells, with pharmacological attenuation of mitochondrial protein synthesis resulting in stabilised levels of OMA1 and OPA1 long forms, which rescued mitochondrial fusion efficiency. Secondary to altered mitochondrial morphology, mitochondrial calcium uptake resulted decreased in SCA28 cells. Conclusion: Our data identify the earliest events in SCA28 pathogenesis and open new perspectives for therapy. By identifying similar mitochondrial phenotypes between SCA28 cells and AFG3L2 +/- cells, our results support haploinsufficiency as the mechanism for the studied pathogenic variants
- …