1,367 research outputs found

    On the spontaneous emission of electromagnetic radiation in the CSL model

    Full text link
    Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in [1], the formula for the emission rate, to first perturbative order, contains two terms: One is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In [1], it was shown that the unphysical term disappears when the noises is confined to a bounded region and the final particle's state is a wave packet. Here we investigate the origin of the unphysical term and why it vanishes according to the previous prescription. For this purpose, the electrodynamic part of the equation of motion is solved exactly while the part due to the noise is treated perturbatively. We show that the unphysical term is connected to exponentially decaying function of time which dies out in the large time limit, however, approximates to 1 in the first perturbative order in the electromagnetic field.Comment: 10 pages, 1 figure, LaTe

    The Mass Shell of the Nelson Model without Cut-Offs

    Full text link
    The massless Nelson model describes non-relativistic, spinless quantum particles interacting with a relativistic, massless, scalar quantum field. The interaction is linear in the field. We analyze the one particle sector. First, we construct the renormalized mass shell of the non-relativistic particle for an arbitrarily small infrared cut-off that turns off the interaction with the low energy modes of the field. No ultraviolet cut-off is imposed. Second, we implement a suitable Bogolyubov transformation of the Hamiltonian in the infrared regime. This transformation depends on the total momentum of the system and is non-unitary as the infrared cut-off is removed. For the transformed Hamiltonian we construct the mass shell in the limit where both the ultraviolet and the infrared cut-off are removed. Our approach is constructive and leads to explicit expansion formulae which are amenable to rigorously control the S-matrix elements.Comment: explanations added, typos correcte

    Large-scale wind-tunnel tests of descent performance of an airplane model with a tilt wing and differential propeller thrust

    Get PDF
    Wind tunnel tests of wing stall, performance, and longitudinal stability & control of large model v/stol tilt wing transport aircraf

    Reliable dual-redundant sensor failure detection and identification for the NASA F-8 DFBW aircraft

    Get PDF
    A technique was developed which provides reliable failure detection and identification (FDI) for a dual redundant subset of the flight control sensors onboard the NASA F-8 digital fly by wire (DFBW) aircraft. The technique was successfully applied to simulated sensor failures on the real time F-8 digital simulator and to sensor failures injected on telemetry data from a test flight of the F-8 DFBW aircraft. For failure identification the technique utilized the analytic redundancy which exists as functional and kinematic relationships among the various quantities being measured by the different control sensor types. The technique can be used not only in a dual redundant sensor system, but also in a more highly redundant system after FDI by conventional voting techniques reduced to two the number of unfailed sensors of a particular type. In addition the technique can be easily extended to the case in which only one sensor of a particular type is available

    Noise gates for decoherent quantum circuits

    Full text link
    A major problem in exploiting microscopic systems for developing a new technology based on the principles of Quantum Information is the influence of noise which tends to work against the quantum features of such systems. It becomes then crucial to understand how noise affects the evolution of quantum circuits: several techniques have been proposed among which stochastic differential equations (SDEs) can represent a very convenient tool. We show how SDEs naturally map any Markovian noise into a linear operator, which we will call a noise gate, acting on the wave function describing the state of the circuit, and we will discuss some examples. We shall see that these gates can be manipulated like any standard quantum gate, thus simplifying in certain circumstances the task of computing the overall effect of the noise at each stage of the protocol. This approach yields equivalent results to those derived from the Lindblad equation; yet, as we show, it represents a handy and fast tool for performing computations, and moreover, it allows for fast numerical simulations and generalizations to non Markovian noise. In detail we review the depolarizing channel and the generalized amplitude damping channel in terms of this noise gate formalism and show how these techniques can be applied to any quantum circuit.Comment: 10 pages, 4 figures: journal reference added + some typos correcte

    Breaking quantum linearity: constraints from human perception and cosmological implications

    Full text link
    Resolving the tension between quantum superpositions and the uniqueness of the classical world is a major open problem. One possibility, which is extensively explored both theoretically and experimentally, is that quantum linearity breaks above a given scale. Theoretically, this possibility is predicted by collapse models. They provide quantitative information on where violations of the superposition principle become manifest. Here we show that the lower bound on the collapse parameter lambda, coming from the analysis of the human visual process, is ~ 7 +/- 2 orders of magnitude stronger than the original bound, in agreement with more recent analysis. This implies that the collapse becomes effective with systems containing ~ 10^4 - 10^5 nucleons, and thus falls within the range of testability with present-day technology. We also compare the spectrum of the collapsing field with those of known cosmological fields, showing that a typical cosmological random field can yield an efficient wave function collapse.Comment: 13 pages, LaTeX, 3 figure

    Antimicrobial use and resistance and the relationship with health and biosecurity status in CIPARS data from Canadian grower-finisher swine herds

    Get PDF
    Antimicrobial resistance (AMR) is a global threat to public and animal health. The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS), created in 2002, is a national program dedicated to the collection, integration, analysis, and communication of trends in antimicrobial use (AMU) and resistance (AMR) in selected bacteria from humans, animals, and animal-derived food sources across Canada. This information supports (i) the creation of evidence‐based policies for AMU in hospitals, communities, and food‐animal production with the aim of prolonging the effectiveness of these drugs and (ii) the identification of appropriate measures to contain the emergence and spread of resistant bacteria among animals, food, and people

    Antimicrobial resistance in fecal generic Escherichia coli in 90 Alberta swine finishing farms: prevalence and risk factors for resistance

    Get PDF
    The objective of this retrospective study was to determine the prevalence of antimicrobial resistance (AMR) in generic Escherichia coli isolates obtained from 90 Alberta finisher swine farms, and to evaluate the potential associations between on-farm antimicrobial use (AMU) practices and observed AMR. The farms were visited three times, approximately one month apart (n=269 farm visits). In total, 5 pen fecal samples were collected per each visit and mixed into one pool per visit. Conventional culture and susceptibility testing were employed. Reported AMU practices through feed, water and injection in different phases of pig production, were collected using a questionnaire

    The 35S U5 snRNP is generated from the activated spliceosome during In vitro splicing

    Get PDF
    Primary gene transcripts of eukaryotes contain introns, which are removed during processing by splicing machinery. Biochemical studies In vitro have identified a specific pathway in which introns are recognised and spliced out. This occurs by progressive formation of spliceosomal complexes designated as E, A, B, and C. The composition and structure of these spliceosomal conformations have been characterised in many detail. In contrast, transitions between the complexes and the intermediates of these reactions are currently less clear. We have previously isolated a novel 35S U5 snRNP from HeLa nuclear extracts. The protein composition of this particle differed from the canonical 20S U5 snRNPs but was remarkably similar to the activated B* spliceosomes. Based on this observation we have proposed a hypothesis that 35S U5 snRNPs represent a dissociation product of the spliceosome after both transesterification reactions are completed. Here we provide experimental evidence that 35S U5 snRNPs are generated from the activated B* spliceosomes during In vitro splicing
    corecore