Spontaneous photon emission in the Continuous Spontaneous Localization (CSL)
model is studied one more time. In the CSL model each particle interacts with a
noise field that induces the collapse of its wave function. As a consequence of
this interaction, when the particle is electrically charged, it radiates. As
discussed in [1], the formula for the emission rate, to first perturbative
order, contains two terms: One is proportional to the Fourier component of the
noise field at the same frequency as that of the emitted photon and one is
proportional to the zero Fourier component of the noise field. As discussed in
previous works, this second term seems unphysical. In [1], it was shown that
the unphysical term disappears when the noises is confined to a bounded region
and the final particle's state is a wave packet. Here we investigate the origin
of the unphysical term and why it vanishes according to the previous
prescription. For this purpose, the electrodynamic part of the equation of
motion is solved exactly while the part due to the noise is treated
perturbatively. We show that the unphysical term is connected to exponentially
decaying function of time which dies out in the large time limit, however,
approximates to 1 in the first perturbative order in the electromagnetic field.Comment: 10 pages, 1 figure, LaTe