1,364 research outputs found

    High resolution frequency analysis techniques with application to the redshift experiment

    Get PDF
    High resolution frequency analysis methods, with application to the gravitational probe redshift experiment, are discussed. For this experiment a resolution of .00001 Hz is required to measure a slowly varying, low frequency signal of approximately 1 Hz. Major building blocks include fast Fourier transform, discrete Fourier transform, Lagrange interpolation, golden section search, and adaptive matched filter technique. Accuracy, resolution, and computer effort of these methods are investigated, including test runs on an IBM 360/65 computer

    An Induced Environment Contamination Monitor for the Space Shuttle

    Get PDF
    The Induced Environment Contamination Monitor (IECM), a set of ten instruments integrated into a self-contained unit and scheduled to fly on shuttle Orbital Flight Tests 1 through 6 and on Spacelabs 1 and 2, is described. The IECM is designed to measure the actual environment to determine whether the strict controls placed on the shuttle system have solved the contamination problem. Measurements are taken during prelaunch, ascent, on-orbit, descent, and postlanding. The on-orbit measurements are molecular return flux, background spectral intensity, molecular deposition, and optical surface effects. During the other mission phases dew point, humidity, aerosol content, and trace gas are measured as well as optical surface effects and molecular deposition. The IECM systems and thermal design are discussed. Preflight and ground operations are presented together with associated ground support equipment. Flight operations and data reduction plans are given

    A preliminary discussion of gravitational physics experiments for the Spacelab era

    Get PDF
    An overview of past, present, and proposed future experiments in gravitational physics is given. These experiments are concerned with the measurement of relativistic gravity effects to test theories of gravitation. Certain experiments which could be performed on shuttle and Spacelab missions and the potential of Spacelab for gravitation physics research are discussed

    BIG MAC: A bolometer array for mid-infrared astronomy, Center Director's Discretionary Fund

    Get PDF
    The infrared array referred to as Big Mac (for Marshall Array Camera), was designed for ground based astronomical observations in the wavelength range 5 to 35 microns. It contains 20 discrete gallium-doped germanium bolometer detectors at a temperature of 1.4K. Each bolometer is irradiated by a square field mirror constituting a single pixel of the array. The mirrors are arranged contiguously in four columns and five rows, thus defining the array configuration. Big Mac utilized cold reimaging optics and an up looking dewar. The total Big Mac system also contains a telescope interface tube for mounting the dewar and a computer for data acquisition and processing. Initial astronomical observations at a major infrared observatory indicate that Big Mac performance is excellent, having achieved the design specifications and making this instrument an outstanding tool for astrophysics

    Development of low-temperature transistor modules to improve the MSFC mid-infrared array

    Get PDF
    This report describes the low-temperature transistor modules designed for use with the MSFC mid-infrared array. The modules were developed in the Space Science Laboratory at Marshall Space Flight Center with Center Director's Discretionary Funds. The transistors (JFETs), which operate at a temperature of 77 K, are epoxied to a copper surface attached to a Teflon substrate. The module substrate insulates the JFETs from the 1.5K detector work surfaces and provides a convenient mounting structure for additional components such as solder pins. These modules have maintained their structural integrity during repeated temperature cycling, and they have to be convenient during maintenance and servicing of the infrared array

    The infrared morphology of galactic centers

    Get PDF
    Initial results are presented of a program to map the centers of galaxies in the mid-infrared using the NASA-MSFC 20 pixel bolometer array. Maps at 10.8 micrometer of the galaxies NGC 5236 (M82), NGC 1808, NGC 4536, and NGC 4527 reveal complex emitting regions ranging in size from 500 pc to 2 kpc. The infrared spatial distributions generally resemble those in the visible and radio. In all cases a large fraction of the IRAS 12 micrometer flux originates in spatial structures prominent in the maps

    Shuttle time and frequency transfer experiment

    Get PDF
    A proposed space shuttle experiment to demonstrate techniques for global high precision comparison of clocks and primary frequency standards is described. The experiment, using transmitted microwave and pulsed laser signals, compared a hydrogen maser clock onboard the space shuttle with a clock in a ground station in order to demonstrate time transfer with accuracies of 1 nsec or better and frequency comparison at the 10 to the -14th power accuracy level

    High-accuracy global time and frequency transfer with a space-borne hydrogen maser clock

    Get PDF
    A proposed system for high-accuracy global time and frequency transfer using a hydrogen maser clock in a space vehicle is discussed. Direct frequency transfer with a accuracy of 10 to the minus 14th power and time transfer with an estimated accuracy of 1 nsec are provided by a 3-link microwave system. A short pulse laser system is included for subnanosecond time transfer and system calibration. The results of studies including operational aspects, error sources, data flow, system configuration, and implementation requirements for an initial demonstration experiment using the Space Shuttle are discussed

    Energy Conversion Research

    Get PDF
    Contains report on one research project.U. S. Air Force (Research and Technology Division) under Contract AF33(615)-3489 with the Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Ohi
    • …
    corecore