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Alternating polyelectrolyte deposition is a promising route to the low-cost fabrication of electrolu-

minescent devices based on semiconductor nanoparticles, but optimization and exploitation

demand a deeper understanding of the fabrication mechanism, which has not hitherto been scruti-

nized in detail. Nanoparticle–polymer composites were assembled by repeated alternate exposures

of a substrate to polyanionic thioglycolate-coated CdTe nanoparticles and the organic polycation

polydiallyldimethylammonium while monitoring the process kinetics in situ using optical wave-

guide lightmode spectroscopy, which enabled detailed structural information to be obtained with

good time resolution. This complements the previously reported device characterization. Two hith-

erto unnoticed features were observed: (i) apparently spontaneous acceleration of addition of semi-

conductor nanoparticles after a certain quantity has already been deposited and (ii) during

subsequent exposure to the organic polycation, an appreciable proportion of the immediately previ-

ously deposited nanoparticles is removed. Analysis of the evolution of the optogeometrical parame-

ters of the assembly revealed that during the initial slow addition the nanoparticles enter nanopores

in the immediately previously deposited polymer. The deposition r�egime then switches abruptly to

the formation of an adlayer of the nanoparticles. These are initially deposited in considerable

excess, which is removable by simple dilution of the system. Further nanoparticle removal takes

place during the following phase of polycation deposition via a process of particle scavenging by

the polycation molecules. Changes in film refractive index during these various processes show

that the predominantly columnar (rather than laminar) molecular arrangement established for

polyelectrolyte-only films is maintained in the hybrid polymer–particle films, although the filling

of the polyelectrolyte pores makes the film more isotropic. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4927403]

Recently, functioning nanoparticle-based electrolumi-

nescent devices were assembled using alternating polyelec-

trolyte deposition (APED).2 Although in that work, the

utility of APED (also loosely known as “layer-by-layer”

(LbL) deposition) was amply demonstrated, the evolution of

the structure of the devices during their formation was not

investigated. In order to permit rational optimization of the

assembly process, we have investigated it in situ using high-

resolution optical waveguide lightmode spectroscopy

(OWLS).

APED enables a pair of oppositely electrostatically

charged polyelectrolytes to be deposited on a substrate by

exposing it alternatingly to solutions of the polyelectrolytes.

The key feature enabling the deposition to continue indefi-

nitely is that upon each exposure the charge is overcompen-

sated.7 In the pioneering demonstration of the phenomenon,11

colloidal particles were used as the polyelectrolyte. The tech-

nique seems to have remained a laboratory curiosity for many

years after its invention. Later, it attracted broader interest,

organic polymeric polyelectrolytes were used,5,26 which

became the “classic” process,4 with numerous applications

being investigated, ranging from papermaking34 to biomedi-

cine.3 An obvious development was to use nano-objects (col-

loidal particles, nanorods, and nanoplatelets) as one

polyeletrolyte and an organic polymer as the other (e.g., Refs.

14, 17, 19, and 33). It has not always been possible to observe

the buildup of the film in any detail but where this has been

done a monotonic increase in the amount of material depos-

ited has been observed (e.g., Refs. 13, 26, and 31)—this can

be considered to be the “classic” behaviour (when both poly-

electrolytes are nano-objects then the behavior is typically

more complicated11,21).

In the course of the previous work,2 it became clear that

in order to progress further with the technology (which

should enable such devices to be fabricated at far lower cost

than using conventional semiconductor processing technol-

ogy—note that working photovoltaic devices based on this

principle have been fabricated from CdSe, albeit with low

conversion efficiencies19—and enable the emission spectrum

to be defined simply by changing the nanoparticle size)

deeper knowledge of the assembly process is needed to

understand the controlling parameters. To achieve this,

OWLS, whereby the nanoparticles are assembled with the

help of a polyelectrolyte on a planar optical waveguide act-

ing as the substrate, is useful because the optogeometric

a)Author to whom correspondence should be addressed. Electronic mail:

jeremy.ramsden@buckingham.ac.uk

0003-6951/2015/107(4)/041604/5/$30.00 VC 2015 AIP Publishing LLC107, 041604-1
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parameters of the assembled layer can be precisely deter-

mined in situ during the assembly process.21,24

Unexpectedly, we observed a striking departure from

the “classic” behavior of a monotonically increasing deposit:

in each cycle, after about 15% of the deposit had been

achieved, the rate of deposition dramatically increased with-

out any external intervention. We further observed that a

considerable fraction was removed during exposure to the

organic polymer polyelectrolyte in the next stage of the dep-

osition cycle.

CdTe nanoparticles were a kind gift from Gaponik.

They were synthesized6 following the method introduced by

Ramsden,23 i.e., by chemical reaction (leading to nucleation

and growth) between an aqueous solution of Cd(ClO4)2 and

HTe in the presence of thioglycolic acid (TGA), which forms

a stabilizing layer on the surface of the particles, giving them

a negative charge (the thiol group reacts with surface cad-

mium ions to form a monolayer shell of CdS around the

CdTe6), followed by refluxing. Fig. 1 shows the optical

absorption (recorded using a Perkin-Elmer Lambda 7 spec-

trophotometer) and photoluminescence (recorded using a

Varian Cary Eclipse spectrophotometer with an excitation

wavelength of 365 nm) spectra of the received particles.

Comparing our spectra to the extensive experimental data

reported by Yu et al.,32 we deduce that our particles have a

mean diameter of about 3.25 nm and that their concentration

cb is 0.144 mg/l.

Polycationic polydiallyldimethylammonium chloride

(PDDA), Mr �200 000–350 000 from Aldrich, was dissolved

in distilled water to a concentration of 5 mg/ml before use.

The substrates were “monomode” planar optical wave-

guides purchased from MicroVacuum (Budapest), the high

refractive index waveguiding layer being a pyrolysed sol-gel

film of Si0.6Ti0.4O2 (Ref. 28) having a roughness of about

1 Å. The waveguides supported the zeroth order transverse

magnetic (TM) and transverse electrical (TE) modes and had

a grating coupler with an embossed surface corrugation

(depth �5–10 nm and grating constant¼ 416.667 nm). Prior

to use, the waveguides were cleaned by placing them for

3 min in chromic acid at room temperature followed by a

brief but thorough rinse in water, then placing them for 5 s in

2% aqueous potassium hydroxide solution, and finally rins-

ing them for 40 min in ultrapure water.

The waveguides were clamped to a miniature flow-

through cuvette made from PEEK and sealed with a Kalrez

“o”-ring to the waveguide, which formed the floor of the

cuvette (area 8 � 2 mm), and the assembly was mounted on

the measuring head of a laboratory-built OWLS integrated

optical scanner,10 with which the effective refractive indices

N of TM0 and TE0 were determined at k¼ 632.816 nm

(He–Ne laser) with a precision of �10�6.22 The sequence of

solutions (Table I) passed through the cuvette was chosen to

exactly match that of the previous work,2 and always ended

with pure water. The temperature of the measurement and all

solutions was 24.0 �C and their refractive indices were close

to that of pure water.

Fig. 2 shows typical results for a deposition run plotted

as NTM (t) and NTE (t) vs t.
Simultaneously, solving the two 4-layer mode equations

linking NTM and NTE to the optogeometric parameters of the

deposited film yields the two unknown parameters of the

assembled layer, i.e., its thickness dA and refractive index

nA,9,29 assumed to be isotropic. These optogeometric param-

eters are plotted in Figure 3.

The total amount of matter deposited is quantifiable as

the optical path d

d ¼ dAðnA � nCÞ; (1)

which was calculated at the end of each cycle and plotted

against the number of CdTe–PDDA deposition cycles (c a b

a) in Fig. 4. Growth is clearly linear as previously observed

for APED involving only linear organic polymer polyelectro-

lytes.26 We can therefore exclude the “exponential” growth

mechanism,16 which has been observed under certain condi-

tions of APED. Similarly, plotting dA vs layer number (not

shown) yields a per-layer thickness of 3 nm, which confirms

the analysis of device cross-section carried out by Bertoni

et al.,2 and which corresponds to the mean diameter of the

nanoparticles.

Initially (label a1), a layer of PDDA is formed—it is the

only macromolecular component in the system. The ability

to repeat the CdTe–PDDA deposition sequence apparently at
libitum amply demonstrates the operation of charge reversal

upon each deposition.7 Nevertheless, the observed behaviour

differs dramatically from the case in which polyelectrolytes

only (i.e., no nanoparticles) are deposited (cf. Figure 5 in

Ref. 26), in which the film thickness increases smoothly and

monotonically during each deposition, and the film refractive

index remains almost constant. The initial PDDA deposition
FIG. 1. The optical absorption (path length 1 cm) and photoluminescence

spectra of the CdTe particles as received (in aqueous suspension).

TABLE I. Process sequence of self-assembly. c a b a constitutes one deposi-

tion cycle.

Label Descriptiona

a1 Pure water to establish a baseline

b1 PDDA solution for 20 min

a2 Pure water for 2 min

c1 CdTe nanoparticle suspension for 20 min

a3 Pure water for 2 min

b2 PDDA solution for 20 min

a4 Pure water for 2 min

c2 Return to c1 to start a new cycle

aLiquids pumped at 1.67 ll/s using a peristaltic pump with Tygon tubing,

corresponding to a wall shear rate of 5.9 s�1.

041604-2 Horvath, Gardner, and Ramsden Appl. Phys. Lett. 107, 041604 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

178.21.55.188 On: Mon, 27 Jul 2015 14:28:48



and the first two depositions of CdTe are shown on an

expanded timescale in Fig. 5, and decomposed into film

thickness and refractive index in Figure 6. The expanded

Figures 5 and 6 are highly revealing regarding the course of

events.

Fig. 5 confirms that the polycationic PDDA (flow initi-

ated at b) forms an initial layer on the negatively charged

Si0.6Ti0.4O2,25 as expected.26 The slight decrease when water

flowed (arrow a2) is presumably due to the removal of

weakly entangled polymer chains. The PDDA is expected to

be adsorbed in loops, engendering a columnar structure with

positive birefringence.7,26 Hence, the average refractive

index of the first PDDA layer calculated by assuming an iso-

tropic film severely underestimates the real value.9

When the CdTe nanoparticles flow over the substrate

(starting at c1), film refractive index increases to a sharp

peak, while the thickness of the film remains unchanged, and

during the increase of nA, the total mass deposited (tracked

as optical path or NTM) shows a small linear increase with

time. From the absence of thickness change we deduce that

the nanoparticles are entering small pores in the polymer poly-

electrolyte layer, for the existence of which evidence has al-

ready been obtained.30 This process would naturally come to

an end when the pores are filled. At that point (marked by the

arrow labeled c on Figs. 5 and 6), the thickness starts to

increase, implying nanoparticle deposition onto, rather than

within, the polymer (and eventually reaches a plateau, as

expected when charge compensation has been achieved) and

concomitantly film refractive index decreases; c also marks

the abrupt change of gradient of the variation of NTM (track-

ing total mass deposited) with time. Total mass deposited,

film thickness, and film refractive index each reach a new

plateau, the refractive index reaches it well before the other

two variables. We have previously shown9 that solving the

mode equations to yield film thickness and average refractive

index with the assumption that the film is optically isotropic

decreases the apparent average refractive index if the film is,

in fact, anisotropic with Wiener’s form factor u ! 0, corre-

sponding to a columnar structure with positive birefringence.

Hence, the pore-filling diminishes the columnar nature of the

film.

After the plateaus are reached, subsequently flowing

water (starting at a3) over the film rapidly removes a sub-

stantial fraction (about one third) of the deposit. From the

magnitude of the removal, it can be deduced that nanopar-

ticles are being removed. If at least some of them are rever-

sibly adsorbed, replacing the nanoparticle solution with pure

FIG. 2. Plots of NTM (t) (open symbols, right hand scale) and NTE (t)
recorded during deposition of an initial PDDA layer on Si0.6Ti0.4O2 followed

by 8 (CdTe, PDDA) alternating pairs.

FIG. 3. Thickness dA (empty symbols, scale on the right) and refractive

index nA (filled symbols, scale on the left), calculated from the data of Fig. 2

assuming no birefringence.

FIG. 4. The total amount of matter represented by the optical path d (Eq.

(1)) vs the number of (c a b a) deposition cycles (Table I).

FIG. 5. The deposition of an initial PDDA layer on Si0.6Ti0.4O2 followed by

the first two (CdTe,PDDA) alternating pairs (enlargement of the first part of

Fig. 2), tracked as NTM. The key to the Roman labels is in Table I; c indi-

cates the abrupt change of rate of mass deposition during exposure to the

nanoparticles.

041604-3 Horvath, Gardner, and Ramsden Appl. Phys. Lett. 107, 041604 (2015)
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water will perturb the equilibrium and the system will relax

to a new state with a smaller number of adsorbed nanopar-

ticles. The hydrodynamic boundary layer thickness dh

depends on the particle diffusivity D, the wall shear rate and

a cell constant;24 using the Stokes–Einstein relation to com-

pute D (1.56� 10�6 cm2/s), we obtain dh¼ 175 lm, from

which we can safely exclude the possibility that flow-

induced mechanical shear is contributing to particle re-

moval. The removal is accompanied by significant densifi-

cation of the film, as evinced by the increase in average

refractive index nA, implying that the adsorbed particles

form a quasilayer on the periphery of the film proper.

The flow of polymer polyelectrolyte (starting at b2)

causes no further change in film refractive index, accompa-

nied by a slight diminution of the thickness (and concomitant

diminution of the deposited mass), which rules out further

densification of the film as the interpretation of the data. The

ability of mobile nanoparticles to scavenge organic films of

surfactant has been previously demonstrated,20 and this phe-

nomenon offers a possible explanation of the diminution of

thickness and mass: mobile polyelectrolyte molecules are

abstracting some of the CdTe nanoparticles and removing

them from the film.

Finally, during the water flow (starting at a4) following

polymer deposition, mass, refractive index, and thickness are

all unchanged, demonstrating film stability. The sequence (c,

c, a, b, a) was repeatable essentially ad libitum with qualita-

tively the same occurrences but the magnitude of the changes

corresponding to the feature labelled c steadily increased

(total deposited mass and thickness) or decreased (average

refractive index) with successive cycles (Figs. 2 and 3). The

trend of nA merely indicates that the structural changes dur-

ing deposition take place in the surface layer only, hence, the

overall effect (averaged over all layers) diminishes as the

number of layers increases. The increase of transient peak

thickness and total deposited mass may be due to an increas-

ingly rough surface (cf. Ref. 1).

High-resolution transmission electron microscopy after 5

deposition cycles shows a uniform dense packing (Fig. 1 in

Ref. 2) consistent with the X-ray reflectivity-based estimate of

an average film density of 2.3–2.6 g/cm3,2 corresponding to a

filling factor of 0.27 (the exact conditions of the X-ray reflec-

tivity measurements were not specified but we assume that

the degree of hydration was similar to that in our experi-

ments). This must correspond to the final average layer refrac-

tive index, which converges to a value of about 1.45 (Fig. 3).

According to the “parallel” effective medium approximation

nA ¼ hnCdTe þ hpolymernpolymer þ hpolymerhwaternwater; (2)

where nCdTe is the refractive index of bulk CdTe (¼2.67 at

633 nm (Ref. 8)), npolymer can be estimated as 1.55 from data

for a similar polymer,12 and nwater¼ 1.33. hwater is the frac-

tional hydration of a pure polyelectrolyte layer (i.e., in the

absence of nanoparticles). It is not known very precisely; we

take 0.25 as a reasonable estimate.27 Hence, from 1¼ hCdTe

þ hpolymerþ hpolymer hwater, we have hpolymer¼ 0.58. From

Eq. (2), we therefore obtain nA¼ 1.81. This is indeed the

peak refractive index reached at c (Fig. 6). The following

rapid decrease of apparent average refractive index while the

strongly refracting CdTe particles continue to be added to

the system makes no sense unless nA is being progressively

underestimated due to increasingly positive birefringence,9,15

which, in turn, is due to a predominantly columnar molecular

orientation, which has been established as a characteristic

feature of polymer polyelectrolyte-only APED.26

In conclusion, OWLS reveals itself as a very useful in
situ technique for yielding fine kinetic structural information

about the deposition, well satisfying the need for critical scru-

tiny of the assembly process. Careful analysis of this informa-

tion revealed that the addition of the nanoparticles to the

polymer polyelectrolyte is a two-stage process: initially, the

particles enter nanopores in the polymer layer and this stage

strictly precedes the formation of a nanoparticle-rich adlayer.

The rate of the former process is likely to be much slower

than the latter. Using the known filling factor to calibrate the

optical path in terms of numbers of CdTe particles, the slow,

uniform rate of pore-filling is about 5� 109 particles cm�2

s�1 (and tends to make the film more isotropic), and the

adlayer formation takes place initially about twentyfold faster

but the rate rapidly diminishes to zero. For comparison, the

diffusion-limited flux of particles to the surface in the absence

of long-range attractive (electrostatic) forces is cb D/dh� 108

particles cm�2 s�1. What is still not clear is why there is such

an abrupt transition between the two r�egimes.

In strong contrast to the alternating deposition of organic

polycation and -anion, the alternating deposition of an or-

ganic polycation and polyanionic CdTe nanocrystals does

not proceed as a simple sequential buildup of layers of the

two substances, although the net deposited mass still

increases linearly with the number of deposition cycles.

The scope of these findings goes well beyond the fabri-

cation of electroluminescent devices that originally inspired

this work; they need to be taken into account whenever an

FIG. 6. The deposition of an initial PDDA layer on Si0.6Ti0.4O2 followed by

the first two (CdTe, PDDA) alternating pairs (enlargement of the first part of

Fig. 3). The key to the Roman labels is in Table I; c indicates the abrupt

change of rate of mass deposition during exposure to the nanoparticles (cf.

Fig. 5). No great significance should be attached to the large fluctuations of

nA and dA at the beginning of deposition, prior to arrow a2. The deposited

layer is ill defined optically and its refractive index is close to that of the

covering medium nC. The mode equations linking the N with nA and dA con-

tain difference terms nA – nC as denominators, which abruptly become very

large as the difference tends to zero. Furthermore, second harmonic genera-

tion experiments (for APED with polymer polyelectrolytes only) have

shown that considerable restructuring occurs within the first layer as it

becomes established.18
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industrial fabrication process based on APED (“layer-by-

layer”) involving nano-objects and polymers is being

contemplated.
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