88 research outputs found

    miRNAs in serum exosomes for differential diagnosis of brain metastases

    Get PDF
    Circulating miRNAs are increasingly studied and proposed as tumor markers with the aim of investigating their role in monitoring the response to therapy as well as the natural evolution of primary or secondary brain tumors. This study aimed to evaluate the modulation of the expression of three miRNAs, miR-21, miR-222 and miR-124-3p, in the serum exosomes of patients with high-grade gliomas (HGGs) and brain metastases (BMs) to verify their usefulness in the differential diagnosis of brain masses; then, it focused on their variations following the surgical and/or radiosurgical treatment of the BMs. A total of 105 patients with BMs from primary lung or breast cancer, or melanoma underwent neurosurgery or radiosurgery treatment, and 91 patients with HGGs were enrolled, along with 30 healthy controls. A significant increase in miR-21 expression in serum exosomes was observed in both HGGs and BMs compared with healthy controls; on the other hand, miR-124-3p was significantly decreased in BMs, and it was increased in HGGs. After the surgical or radiosurgical treatment of patients with BMs, a significant reduction in miR-21 was noted with both types of treatments. This study identified a signature of exosomal miRNAs that could be useful as a noninvasive complementary analysis both in the differential diagnosis of BMs from glial tumors and in providing information on tumor evolution over time

    A peptide-nucleic acid targeting miR-335-5p enhances expression of cystic fibrosis transmembrane conductance regulator (CFTR) gene with the possible involvement of the CFTR scaffolding protein NHERF1

    Get PDF
    (1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be upregulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3′-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-3355p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine

    GBA2-encoded β-glucosidase activity is involved in the inflammatory response to Pseudomonas aeruginosa

    Get PDF
    Current anti-inflammatory strategies for the treatment of pulmonary disease in cystic fibrosis (CF) are limited; thus, there is continued interest in identifying additional molecular targets for therapeutic intervention. Given the emerging role of sphingolipids (SLs) in various respiratory disorders, including CF, drugs that selectively target the enzymes associated with SL metabolism are under development. Miglustat, a well-characterized iminosugar-based inhibitor of \u3b2-glucosidase 2 (GBA2), has shown promise in CF treatment because it reduces the inflammatory response to infection by P. aeruginosa and restores F508del-CFTR chloride channel activity. This study aimed to probe the molecular basis for the anti-inflammatory activity of miglustat by examining specifically the role of GBA2 following the infection of CF bronchial epithelial cells by P. aeruginosa. We also report the anti-inflammatory activity of another potent inhibitor of GBA2 activity, namely N-(5-adamantane-1-yl-methoxy)pentyl)-deoxynojirimycin (Genz-529648). In CF bronchial cells, inhibition of GBA2 by miglustat or Genz-529648 significantly reduced the induction of IL-8 mRNA levels and protein release following infection by P. aeruginosa. Hence, the present data demonstrate that the anti-inflammatory effects of miglustat and Genz-529648 are likely exerted through inhibition of GBA2

    Integrin αvβ5 is a primary receptor for adenovirus in CAR-negative cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viruses bind to specific cellular receptors in order to infect their hosts. The specific receptors a virus uses are important factors in determining host range, cellular tropism, and pathogenesis. For adenovirus, the existing model of entry requires two receptor interactions. First, the viral fiber protein binds Coxsackie and Adenovirus Receptor (CAR), its primary cellular receptor, which docks the virus to the cell surface. Next, viral penton base engages cellular integrins, coreceptors thought to be required exclusively for internalization and not contributing to binding. However, a number of studies reporting data which conflicts with this simple model have been published. These observations have led us to question the proposed two-step model for adenovirus infection.</p> <p>Results</p> <p>In this study we report that cells which express little to no CAR can be efficiently transduced by adenovirus. Using competition experiments between whole virus and soluble viral fiber protein or integrin blocking peptides, we show virus binding is not dependent on fiber binding to cells but rather on penton base binding cellular integrins. Further, we find that binding to low CAR expressing cells is inhibited specifically by a blocking antibody to integrin αvβ5, demonstrating that in these cells integrin αvβ5 and not CAR is required for adenovirus attachment. The binding mediated by integrin αvβ5 is extremely high affinity, in the picomolar range.</p> <p>Conclusions</p> <p>Our data further challenges the model of adenovirus infection in which binding to primary receptor CAR is required in order for subsequent interactions between adenovirus and integrins to initiate viral entry. In low CAR cells, binding occurs through integrin αvβ5, a receptor previously thought to be used exclusively in internalization. We show for the first time that integrin αvβ5 can be used as an alternate binding receptor.</p

    Mechanisms of the noxious inflammatory cycle in cystic fibrosis

    Get PDF
    Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508), accounting for this pathology, is retained in the endoplasmic reticulum (ER), induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis

    Anatomical Differences Determine Distribution of Adenovirus after Convection-Enhanced Delivery to the Rat Brain

    Get PDF
    Background: Convection-enhanced delivery (CED) of adenoviruses offers the potential of widespread virus distribution in the brain. In CED, the volume of distribution (Vd) should be related to the volume of infusion (Vi) and not to dose, but when using adenoviruses contrasting results have been reported. As the characteristics of the infused tissue can affect convective delivery, this study was performed to determine the effects of the gray and white matter on CED of adenoviruses and similar sized super paramagnetic iron oxide nanoparticles (SPIO). Methodology/Principal Findings: We convected AdGFP, an adenovirus vector expressing Green Fluorescent Protein, a virus sized SPIO or trypan blue in the gray and white matter of the striatum and external capsule of Wistar rats and towards orthotopic infiltrative brain tumors. The resulting Vds were compared to Vi and transgene expression to SPIO distribution. Results show that in the striatum Vd is not determined by the Vi but by the infused virus dose, suggesting diffusion, active transport or receptor saturation rather than convection. Distribution of virus and SPIO in the white matter is partly volume dependent, which is probably caused by preferential fluid pathways from the external capsule to the surrounding gray matter, as demonstrated by co-infusing trypan blue. Distant tumors were reached using the white matter tracts but tumor penetration was limited. Conclusions/Significance: CED of adenoviruses in the rat brain and towards infiltrative tumors is feasible when regional anatomical differences are taken into account while SPIO infusion could be considered to validate proper catheter positioning and predict adenoviral distribution

    Role of Cellular Heparan Sulfate Proteoglycans in Infection of Human Adenovirus Serotype 3 and 35

    Get PDF
    Species B human adenoviruses (Ads) are increasingly associated with outbreaks of acute respiratory disease in U.S. military personnel and civil population. The initial interaction of Ads with cellular attachment receptors on host cells is via Ad fiber knob protein. Our previous studies showed that one species B Ad receptor is the complement receptor CD46 that is used by serotypes 11, 16, 21, 35, and 50 but not by serotypes 3, 7, and 14. In this study, we attempted to identify yet-unknown species B cellular receptors. For this purpose we used recombinant Ad3 and Ad35 fiber knobs in high-throughput receptor screening methods including mass spectrometry analysis and glycan arrays. Surprisingly, we found that the main interacting surface molecules of Ad3 fiber knob are cellular heparan sulfate proteoglycans (HSPGs). We subsequently found that HSPGs acted as low-affinity co-receptors for Ad3 but did not represent the main receptor of this serotype. Our study also revealed a new CD46-independent infection pathway of Ad35. This Ad35 infection mechanism is mediated by cellular HSPGs. The interaction of Ad35 with HSPGs is not via fiber knob, whereas Ad3 interacts with HSPGs via fiber knob. Both Ad3 and Ad35 interacted specifically with the sulfated regions within HSPGs that have also been implicated in binding physiologic ligands. In conclusion, our findings show that Ad3 and Ad35 directly utilize HSPGs as co-receptors for infection. Our data suggest that adenoviruses evolved to simulate the presence of physiologic HSPG ligands in order to increase infection

    Defining a Novel Role for the Coxsackievirus and Adenovirus Receptor in Human Adenovirus Serotype 5 Transduction In Vitro in the Presence of Mouse Serum

    Get PDF
    Human adenoviral serotype 5 (HAdV-5) vectors have predominantly hepatic tropism when delivered intravascularly, resulting in immune activation and toxicity. Coagulation FX binding to HAdV-5 mediates liver transduction and provides protection from virion neutralisation in mice. FX is dispensable for liver transduction in mice lacking IgM antibodies or complement, suggesting alternative transduction pathways exist. To identify novel factor(s) mediating HAdV-5 FX-independent entry, we investigated HAdV-5 transduction in vitro in the presence of serum from immunocompetent C57BL/6 or immunocompromised mice lacking IgM antibodies (Rag 2-/- and NSG). Sera from all three mouse strains enhanced HAdV-5 transduction of A549 cells. While inhibition of HAdV-5:FX interaction with X-bp inhibited transduction in the presence of C57BL/6 serum, it had negligible effect on the enhanced transduction observed in the presence of Rag 2-/- or NSG serum. Rag 2-/- serum also enhanced transduction of the FX-binding deficient AdT*. Interestingly, Rag 2-/- serum enhanced HAdV-5 transduction in a FX-independent manner in CHO-CAR and SKOV3-CAR cells. Additionally, blockade of CAR with soluble HAdV-5 fiber knob inhibited mouse serum-enhanced transduction in A549 cells, suggesting a potential role for CAR. Transduction of HAdV-5 KO1 and HAdV-5/F35 (CAR-binding deficient) in the presence of Rag 2-/- serum was equivalent to that of HAdV-5, indicating that direct interaction between HAdV-5 and CAR is not required. These data suggest that FX may protect HAdV-5 from neutralization but has minimal contribution to HAdV-5 transduction in the presence of immunocompromised mouse serum. Alternatively, transduction occurs via an unidentified mouse serum protein capable of bridging HAdV-5 to CAR

    Protein kinase C activates chloride conductance in C127 cells stably expressing the cystic fibrosis gene

    No full text
    The regulatory domain (R domain) of the cystic fibrosis transmembrane conductance regulator (CFTR) is phosphorylated by protein kinase A and protein kinase C (PKC) in vivo (Picciotto, M. R., Cohn, J. A., Bertuzzi, G., Greengard, P., and Nairn, A. C. (1992) J. Biol. Chem. 267, 12742-12752), but so far the functional effect of the PKC-dependent phosphorylation has not been clarified. We investigated the effect of PKC on the CFTR-mediated Cl- transport by treating with phorbol 12-myristate 13-acetate (PMA), the cell line C127i stably expressing CFTR wild type (C127 CFTRw/t), or CFTR bearing the most common mutation deltaF508 (C127 CFTRdF508). We show that PMA activates Cl- efflux in C127 CFTRw/t, but not in C127 CFTRdF508 and C127i. The PMA-dependent activation of CFTR is not mediated by increase of intracellular [cAMP] and is not the result of a primary activation of a K+ conductive pathway. These results strongly suggest that PKC activates directly CFTR-mediated Cl- transport

    The Km of NADH dehydrogenase is decreased in mitochondria of cystic fibrosis cells

    No full text
    The kinetic properties of the NADH dehydrogenase of the mitochondrial respiratory chain, assayed as NADH-dependent rotenone-sensitive cytochrome c reductase have been studied in mitochondria isolated from mononuclear white blood cells in patients affected by cystic fibrosis. Data reported here show that the apparent Km of the enzyme for NADH is significantly decreased in cystic fibrosis mitochondria. These findings are independent of the age or the clinical state of the disease and have also been obtained with mitochondria isolated from cultured skin fibroblasts. These observations support the notion that cystic fibrosis is possibly accompanied by alterations of intracellular membranes and these are evident also in circulating cells and cultured fibroblasts
    • …
    corecore