20 research outputs found

    Cold-Atmospheric Plasma Induces Tumor Cell Death in Preclinical In Vivo and In Vitro Models of Human Cholangiocarcinoma

    Get PDF
    Through the last decade, cold atmospheric plasma (CAP) has emerged as an innovative therapeutic option for cancer treatment. Recently, we have set up a potentially safe atmospheric pressure plasma jet device that displays antitumoral properties in a preclinical model of cholangiocarcinoma (CCA), a rare and very aggressive cancer emerging from the biliary tree with few efficient treatments. In the present study, we aimed at deciphering the molecular mechanisms underlying the antitumor effects of CAP towards CCA in both an in vivo and in vitro context. In vivo, using subcutaneous xenografts into immunocompromised mice, CAP treatment of CCA induced DNA lesions and tumor cell apoptosis, as evaluated by 8-oxoguanine and cleaved caspase-3 immunohistochemistry, respectively. The analysis of the tumor microenvironment showed changes in markers related to macrophage polarization. In vitro, the incubation of CCA cells with CAP-treated culture media (i.e., plasma-activated media, PAM) led to a dose response decrease in cell survival. At molecular level, CAP treatment induced double-strand DNA breaks, followed by an increased phosphorylation and activation of the cell cycle master regulators CHK1 and p53, leading to cell cycle arrest and cell death by apoptosis. In conclusion, CAP is a novel therapeutic option to consider for CCA in the future

    Physics of cold plasma jets. Fundamental study of guided streamers and applications in oncology

    No full text
    Les sources à jet de plasma froid présentent un intérêt majeur pour les applications médicales, en particulier en oncologie. De par leurs propriétés chimiques (production d’espèces réactives de l’azote et de l’oxygène), radiatives (rayonnement UV/visible), thermiques et électriques (champ électrique, impulsions de courant), les jets de plasma froid constituent un outil thérapeutique innovant. En amont d’une utilisation clinique, il est nécessaire de comprendre les mécanismes de physique fondamentale qui régissent leur fonctionnement mais aussi de créer des sources ad hoc pour obtenir une efficacité antitumorale significative à partir de modèles tumoraux à pronostic sombre. Cette thèse se positionne donc à l’interface de deux volets : d’une part un volet dédié à la physique des streamers et des sources à jet de plasma froid menée au LPP (Laboratoire de Physique des Plasmas, Paris) et d’autre part un volet dédié à l’oncologie mené au CRSA (Centre de Recherche Saint-Antoine, Paris) et au CRC (Centre de Recherche des Cordeliers, Paris). En un premier temps, cette thèse porte sur une étude fondamentale dédié à la physique de propagation et de contre-propagation des streamers générés dans des jets de plasma, en interaction avec 3 types de cibles métalliques : électrode annulaire à la masse, électrode plane à la masse et électrode grille à potentiel flottant. Ces cibles correspondent à des éléments pouvant être intégrés aux sources à jet de plasma froid en vue d’une utilisation thérapeutique, afin de garantir l’absence de risque électrique et thermique. A l’aide de diagnostics spectroscopiques, électriques et d’imagerie rapide, il a ainsi été possible de mettre en lumière l’existence de streamers négatifs se contre-propageant à des vitesses supérieures à celles des streamers incidents. Un modèle théorique de la contre-propagation a ainsi pu être élaboré. L’ajout d’une électrode grille à potentiel flottant entre la sortie du tube (source plasma) et l’électrode plane à la masse a permis d’identifier un phénomène de périodisation des streamers qui apparaît pour des conditions précises de tension et de distance : N streamers atteignant la grille (avec 1N entre 1 et 6) conduit à un unique streamer transmis atteignant la cible. Sur la base de mesures électriques et optiques, un modèle est proposé pour analyser les paramètres régissant cette périodisation. De cette compréhension approfondie des interactions « streamers-cibles », découle la possibilité de créer des sources à jet de plasma froid en vue de répondre à des applications oncologiques, notamment des catheters plasma utilisables par endoscopie. Deux modèles de tumeurs solides avec un mauvais pronostic ont ainsi été étudiés : le cholangiocarcinome (cancer des voies biliaires) et le cancer bronchique non à petites cellules (cancer du poumon). Dans le cas du cholangiocarcinome, des expériences in vitro ont démontré une efficacité antitumorale élevée, tout en présentant des avantages en termes de sélectivité biologique. Sur la base d’études in vivo menées sur des modèles murins et dans la perspective d’une applicabilité chez l’humain, un cathéter à plasma froid a été utilisé sur deux modèles précliniques : un ERCP trainer et un modèle anatomique post-mortem porcin. Il a ainsi été possible de montrer l’absence de risque électrique et thermique. En parallèle, l’analyse des effets du plasma froid sur le cancer du poumon non à petites cellules a fait l’objet de 9 campagnes in vivo menées sur des modèles murins au cours de cette thèse. Deux sources à plasma présentant des configurations d’électrodes différentes ont été comparées, les deux entrainant systématiquement des inflexions de croissance tumorale importantes (p-valeur < 1e-4). Un effet abscopal a aussi été démontré sur des modèles tumoraux ectopiques.Cold plasma jet sources are of major interest for medical applications, especially in oncology. Due to their chemical (production of reactive nitrogen and oxygen species), radiative (UV/visible radiation), thermal and electrical (electric field, current pulses) properties, cold plasma jets constitute an innovative therapeutic tool. Prior to clinical use, it is necessary to understand the fundamental physics mechanisms that govern their operation but also to create ad hoc sources to obtain significant anti-tumour efficacy from tumour models with a poor prognosis. This thesis is therefore positioned at the interface of two parts: on the one hand, a part dedicated to the physics of streamers and cold plasma jet sources carried out at the LPP (Laboratoire de physique des plasmas, Paris) and on the other hand, a part dedicated to oncology carried out at the CRSA (Centre de recherche Saint-Antoine, Paris) and the CRC (Centre de Recherche des Cordeliers, Paris). Firstly, this thesis focuses on a fundamental study dedicated to the physics of propagation and counter-propagation of streamers generated in plasma jets, interacting with 3 types of metallic targets: grounded ring electrode, grounded plane electrode and floating potential grid electrode. These targets correspond to elements that can be integrated into cold plasma jet sources for therapeutic use, in order to guarantee the absence of electrical and thermal risks. Using spectroscopic, electrical and rapid imaging diagnostics, it was possible to identify the existence of negative streamers counter-propagating at higher speeds than the incident streamers. A theoretical model of counter-propagation was thus developed. The addition of a floating potential grid electrode between the tube outlet (plasma source) and the grounded plane electrode allowed the identification of a streamer periodization phenomenon that appears for specific voltage and distance conditions: N streamers reaching the grid (with N between 1 and 6) leads to a single transmitted streamer reaching the target. Based on electrical and optical measurements, a model is proposed to analyse the parameters governing this periodization. This in-depth understanding of streamer-target interactions leads to the possibility of creating cold plasma jet sources for oncological applications, in particular plasma catheters that can be used in endoscopy. Two solid tumour models with a poor prognosis were studied: cholangiocarcinoma (biliary tract cancer) and non-small cell bronchial cancer (lung cancer). In the case of cholangiocarcinoma, in vitro experiments have demonstrated high anti-tumour efficacy, while at the same time offering advantages in terms of biological selectivity. Based on in vivo studies in mouse models and with a view to human applicability, a cold plasma catheter was used in two preclinical models: an ERCP trainer and a porcine post-mortem anatomical model. It was thus possible to demonstrate the absence of electrical and thermal risks. In parallel, the analysis of the effects of cold plasma on non-small cell lung cancer was the subject of 9 in vivo campaigns conducted on murine models during this thesis. Two plasma sources with different electrode configurations were compared, both of which consistently resulted in significant tumour growth inflections (p-value < 1e-4). An abscopal effect was also demonstrated on ectopic tumour models

    Physique des jets de plasma froid. Étude fondamentale des streamers guidés et applications à l’oncologie

    No full text
    Cold plasma jet sources are of major interest for medical applications, especially in oncology. Due to their chemical (production of reactive nitrogen and oxygen species), radiative (UV/visible radiation), thermal and electrical (electric field, current pulses) properties, cold plasma jets constitute an innovative therapeutic tool. Prior to clinical use, it is necessary to understand the fundamental physics mechanisms that govern their operation but also to create ad hoc sources to obtain significant anti-tumour efficacy from tumour models with a poor prognosis. This thesis is therefore positioned at the interface of two parts: on the one hand, a part dedicated to the physics of streamers and cold plasma jet sources carried out at the LPP (Laboratoire de physique des plasmas, Paris) and on the other hand, a part dedicated to oncology carried out at the CRSA (Centre de recherche Saint-Antoine, Paris) and the CRC (Centre de Recherche des Cordeliers, Paris). Firstly, this thesis focuses on a fundamental study dedicated to the physics of propagation and counter-propagation of streamers generated in plasma jets, interacting with 3 types of metallic targets: grounded ring electrode, grounded plane electrode and floating potential grid electrode. These targets correspond to elements that can be integrated into cold plasma jet sources for therapeutic use, in order to guarantee the absence of electrical and thermal risks. Using spectroscopic, electrical and rapid imaging diagnostics, it was possible to identify the existence of negative streamers counter-propagating at higher speeds than the incident streamers. A theoretical model of counter-propagation was thus developed. The addition of a floating potential grid electrode between the tube outlet (plasma source) and the grounded plane electrode allowed the identification of a streamer periodization phenomenon that appears for specific voltage and distance conditions: N streamers reaching the grid (with N between 1 and 6) leads to a single transmitted streamer reaching the target. Based on electrical and optical measurements, a model is proposed to analyse the parameters governing this periodization. This in-depth understanding of streamer-target interactions leads to the possibility of creating cold plasma jet sources for oncological applications, in particular plasma catheters that can be used in endoscopy. Two solid tumour models with a poor prognosis were studied: cholangiocarcinoma (biliary tract cancer) and non-small cell bronchial cancer (lung cancer). In the case of cholangiocarcinoma, in vitro experiments have demonstrated high anti-tumour efficacy, while at the same time offering advantages in terms of biological selectivity. Based on in vivo studies in mouse models and with a view to human applicability, a cold plasma catheter was used in two preclinical models: an ERCP trainer and a porcine post-mortem anatomical model. It was thus possible to demonstrate the absence of electrical and thermal risks. In parallel, the analysis of the effects of cold plasma on non-small cell lung cancer was the subject of 9 in vivo campaigns conducted on murine models during this thesis. Two plasma sources with different electrode configurations were compared, both of which consistently resulted in significant tumour growth inflections (p-value < 1e-4). An abscopal effect was also demonstrated on ectopic tumour models.Les sources à jet de plasma froid présentent un intérêt majeur pour les applications médicales, en particulier en oncologie. De par leurs propriétés chimiques (production d’espèces réactives de l’azote et de l’oxygène), radiatives (rayonnement UV/visible), thermiques et électriques (champ électrique, impulsions de courant), les jets de plasma froid constituent un outil thérapeutique innovant. En amont d’une utilisation clinique, il est nécessaire de comprendre les mécanismes de physique fondamentale qui régissent leur fonctionnement mais aussi de créer des sources ad hoc pour obtenir une efficacité antitumorale significative à partir de modèles tumoraux à pronostic sombre. Cette thèse se positionne donc à l’interface de deux volets : d’une part un volet dédié à la physique des streamers et des sources à jet de plasma froid menée au LPP (Laboratoire de Physique des Plasmas, Paris) et d’autre part un volet dédié à l’oncologie mené au CRSA (Centre de Recherche Saint-Antoine, Paris) et au CRC (Centre de Recherche des Cordeliers, Paris). En un premier temps, cette thèse porte sur une étude fondamentale dédié à la physique de propagation et de contre-propagation des streamers générés dans des jets de plasma, en interaction avec 3 types de cibles métalliques : électrode annulaire à la masse, électrode plane à la masse et électrode grille à potentiel flottant. Ces cibles correspondent à des éléments pouvant être intégrés aux sources à jet de plasma froid en vue d’une utilisation thérapeutique, afin de garantir l’absence de risque électrique et thermique. A l’aide de diagnostics spectroscopiques, électriques et d’imagerie rapide, il a ainsi été possible de mettre en lumière l’existence de streamers négatifs se contre-propageant à des vitesses supérieures à celles des streamers incidents. Un modèle théorique de la contre-propagation a ainsi pu être élaboré. L’ajout d’une électrode grille à potentiel flottant entre la sortie du tube (source plasma) et l’électrode plane à la masse a permis d’identifier un phénomène de périodisation des streamers qui apparaît pour des conditions précises de tension et de distance : N streamers atteignant la grille (avec 1N entre 1 et 6) conduit à un unique streamer transmis atteignant la cible. Sur la base de mesures électriques et optiques, un modèle est proposé pour analyser les paramètres régissant cette périodisation. De cette compréhension approfondie des interactions « streamers-cibles », découle la possibilité de créer des sources à jet de plasma froid en vue de répondre à des applications oncologiques, notamment des catheters plasma utilisables par endoscopie. Deux modèles de tumeurs solides avec un mauvais pronostic ont ainsi été étudiés : le cholangiocarcinome (cancer des voies biliaires) et le cancer bronchique non à petites cellules (cancer du poumon). Dans le cas du cholangiocarcinome, des expériences in vitro ont démontré une efficacité antitumorale élevée, tout en présentant des avantages en termes de sélectivité biologique. Sur la base d’études in vivo menées sur des modèles murins et dans la perspective d’une applicabilité chez l’humain, un cathéter à plasma froid a été utilisé sur deux modèles précliniques : un ERCP trainer et un modèle anatomique post-mortem porcin. Il a ainsi été possible de montrer l’absence de risque électrique et thermique. En parallèle, l’analyse des effets du plasma froid sur le cancer du poumon non à petites cellules a fait l’objet de 9 campagnes in vivo menées sur des modèles murins au cours de cette thèse. Deux sources à plasma présentant des configurations d’électrodes différentes ont été comparées, les deux entrainant systématiquement des inflexions de croissance tumorale importantes (p-valeur < 1e-4). Un effet abscopal a aussi été démontré sur des modèles tumoraux ectopiques

    Physique des jets de plasma froid. Étude fondamentale des streamers guidés et applications à l’oncologie

    No full text
    Cold plasma jet sources are of major interest for medical applications, especially in oncology. Due to their chemical (production of reactive nitrogen and oxygen species), radiative (UV/visible radiation), thermal and electrical (electric field, current pulses) properties, cold plasma jets constitute an innovative therapeutic tool. Prior to clinical use, it is necessary to understand the fundamental physics mechanisms that govern their operation but also to create ad hoc sources to obtain significant anti-tumour efficacy from tumour models with a poor prognosis. This thesis is therefore positioned at the interface of two parts: on the one hand, a part dedicated to the physics of streamers and cold plasma jet sources carried out at the LPP (Laboratoire de physique des plasmas, Paris) and on the other hand, a part dedicated to oncology carried out at the CRSA (Centre de recherche Saint-Antoine, Paris) and the CRC (Centre de Recherche des Cordeliers, Paris). Firstly, this thesis focuses on a fundamental study dedicated to the physics of propagation and counter-propagation of streamers generated in plasma jets, interacting with 3 types of metallic targets: grounded ring electrode, grounded plane electrode and floating potential grid electrode. These targets correspond to elements that can be integrated into cold plasma jet sources for therapeutic use, in order to guarantee the absence of electrical and thermal risks. Using spectroscopic, electrical and rapid imaging diagnostics, it was possible to identify the existence of negative streamers counter-propagating at higher speeds than the incident streamers. A theoretical model of counter-propagation was thus developed. The addition of a floating potential grid electrode between the tube outlet (plasma source) and the grounded plane electrode allowed the identification of a streamer periodization phenomenon that appears for specific voltage and distance conditions: N streamers reaching the grid (with N between 1 and 6) leads to a single transmitted streamer reaching the target. Based on electrical and optical measurements, a model is proposed to analyse the parameters governing this periodization. This in-depth understanding of streamer-target interactions leads to the possibility of creating cold plasma jet sources for oncological applications, in particular plasma catheters that can be used in endoscopy. Two solid tumour models with a poor prognosis were studied: cholangiocarcinoma (biliary tract cancer) and non-small cell bronchial cancer (lung cancer). In the case of cholangiocarcinoma, in vitro experiments have demonstrated high anti-tumour efficacy, while at the same time offering advantages in terms of biological selectivity. Based on in vivo studies in mouse models and with a view to human applicability, a cold plasma catheter was used in two preclinical models: an ERCP trainer and a porcine post-mortem anatomical model. It was thus possible to demonstrate the absence of electrical and thermal risks. In parallel, the analysis of the effects of cold plasma on non-small cell lung cancer was the subject of 9 in vivo campaigns conducted on murine models during this thesis. Two plasma sources with different electrode configurations were compared, both of which consistently resulted in significant tumour growth inflections (p-value < 1e-4). An abscopal effect was also demonstrated on ectopic tumour models.Les sources à jet de plasma froid présentent un intérêt majeur pour les applications médicales, en particulier en oncologie. De par leurs propriétés chimiques (production d’espèces réactives de l’azote et de l’oxygène), radiatives (rayonnement UV/visible), thermiques et électriques (champ électrique, impulsions de courant), les jets de plasma froid constituent un outil thérapeutique innovant. En amont d’une utilisation clinique, il est nécessaire de comprendre les mécanismes de physique fondamentale qui régissent leur fonctionnement mais aussi de créer des sources ad hoc pour obtenir une efficacité antitumorale significative à partir de modèles tumoraux à pronostic sombre. Cette thèse se positionne donc à l’interface de deux volets : d’une part un volet dédié à la physique des streamers et des sources à jet de plasma froid menée au LPP (Laboratoire de Physique des Plasmas, Paris) et d’autre part un volet dédié à l’oncologie mené au CRSA (Centre de Recherche Saint-Antoine, Paris) et au CRC (Centre de Recherche des Cordeliers, Paris). En un premier temps, cette thèse porte sur une étude fondamentale dédié à la physique de propagation et de contre-propagation des streamers générés dans des jets de plasma, en interaction avec 3 types de cibles métalliques : électrode annulaire à la masse, électrode plane à la masse et électrode grille à potentiel flottant. Ces cibles correspondent à des éléments pouvant être intégrés aux sources à jet de plasma froid en vue d’une utilisation thérapeutique, afin de garantir l’absence de risque électrique et thermique. A l’aide de diagnostics spectroscopiques, électriques et d’imagerie rapide, il a ainsi été possible de mettre en lumière l’existence de streamers négatifs se contre-propageant à des vitesses supérieures à celles des streamers incidents. Un modèle théorique de la contre-propagation a ainsi pu être élaboré. L’ajout d’une électrode grille à potentiel flottant entre la sortie du tube (source plasma) et l’électrode plane à la masse a permis d’identifier un phénomène de périodisation des streamers qui apparaît pour des conditions précises de tension et de distance : N streamers atteignant la grille (avec 1N entre 1 et 6) conduit à un unique streamer transmis atteignant la cible. Sur la base de mesures électriques et optiques, un modèle est proposé pour analyser les paramètres régissant cette périodisation. De cette compréhension approfondie des interactions « streamers-cibles », découle la possibilité de créer des sources à jet de plasma froid en vue de répondre à des applications oncologiques, notamment des catheters plasma utilisables par endoscopie. Deux modèles de tumeurs solides avec un mauvais pronostic ont ainsi été étudiés : le cholangiocarcinome (cancer des voies biliaires) et le cancer bronchique non à petites cellules (cancer du poumon). Dans le cas du cholangiocarcinome, des expériences in vitro ont démontré une efficacité antitumorale élevée, tout en présentant des avantages en termes de sélectivité biologique. Sur la base d’études in vivo menées sur des modèles murins et dans la perspective d’une applicabilité chez l’humain, un cathéter à plasma froid a été utilisé sur deux modèles précliniques : un ERCP trainer et un modèle anatomique post-mortem porcin. Il a ainsi été possible de montrer l’absence de risque électrique et thermique. En parallèle, l’analyse des effets du plasma froid sur le cancer du poumon non à petites cellules a fait l’objet de 9 campagnes in vivo menées sur des modèles murins au cours de cette thèse. Deux sources à plasma présentant des configurations d’électrodes différentes ont été comparées, les deux entrainant systématiquement des inflexions de croissance tumorale importantes (p-valeur < 1e-4). Un effet abscopal a aussi été démontré sur des modèles tumoraux ectopiques

    Physique des jets de plasma froid. Étude fondamentale des streamers guidés et applications à l’oncologie

    No full text
    Cold plasma jet sources are of major interest for medical applications, especially in oncology. Due to their chemical (production of reactive nitrogen and oxygen species), radiative (UV/visible radiation), thermal and electrical (electric field, current pulses) properties, cold plasma jets constitute an innovative therapeutic tool. Prior to clinical use, it is necessary to understand the fundamental physics mechanisms that govern their operation but also to create ad hoc sources to obtain significant anti-tumour efficacy from tumour models with a poor prognosis. This thesis is therefore positioned at the interface of two parts: on the one hand, a part dedicated to the physics of streamers and cold plasma jet sources carried out at the LPP (Laboratoire de physique des plasmas, Paris) and on the other hand, a part dedicated to oncology carried out at the CRSA (Centre de recherche Saint-Antoine, Paris) and the CRC (Centre de Recherche des Cordeliers, Paris). Firstly, this thesis focuses on a fundamental study dedicated to the physics of propagation and counter-propagation of streamers generated in plasma jets, interacting with 3 types of metallic targets: grounded ring electrode, grounded plane electrode and floating potential grid electrode. These targets correspond to elements that can be integrated into cold plasma jet sources for therapeutic use, in order to guarantee the absence of electrical and thermal risks. Using spectroscopic, electrical and rapid imaging diagnostics, it was possible to identify the existence of negative streamers counter-propagating at higher speeds than the incident streamers. A theoretical model of counter-propagation was thus developed. The addition of a floating potential grid electrode between the tube outlet (plasma source) and the grounded plane electrode allowed the identification of a streamer periodization phenomenon that appears for specific voltage and distance conditions: N streamers reaching the grid (with N between 1 and 6) leads to a single transmitted streamer reaching the target. Based on electrical and optical measurements, a model is proposed to analyse the parameters governing this periodization. This in-depth understanding of streamer-target interactions leads to the possibility of creating cold plasma jet sources for oncological applications, in particular plasma catheters that can be used in endoscopy. Two solid tumour models with a poor prognosis were studied: cholangiocarcinoma (biliary tract cancer) and non-small cell bronchial cancer (lung cancer). In the case of cholangiocarcinoma, in vitro experiments have demonstrated high anti-tumour efficacy, while at the same time offering advantages in terms of biological selectivity. Based on in vivo studies in mouse models and with a view to human applicability, a cold plasma catheter was used in two preclinical models: an ERCP trainer and a porcine post-mortem anatomical model. It was thus possible to demonstrate the absence of electrical and thermal risks. In parallel, the analysis of the effects of cold plasma on non-small cell lung cancer was the subject of 9 in vivo campaigns conducted on murine models during this thesis. Two plasma sources with different electrode configurations were compared, both of which consistently resulted in significant tumour growth inflections (p-value < 1e-4). An abscopal effect was also demonstrated on ectopic tumour models.Les sources à jet de plasma froid présentent un intérêt majeur pour les applications médicales, en particulier en oncologie. De par leurs propriétés chimiques (production d’espèces réactives de l’azote et de l’oxygène), radiatives (rayonnement UV/visible), thermiques et électriques (champ électrique, impulsions de courant), les jets de plasma froid constituent un outil thérapeutique innovant. En amont d’une utilisation clinique, il est nécessaire de comprendre les mécanismes de physique fondamentale qui régissent leur fonctionnement mais aussi de créer des sources ad hoc pour obtenir une efficacité antitumorale significative à partir de modèles tumoraux à pronostic sombre. Cette thèse se positionne donc à l’interface de deux volets : d’une part un volet dédié à la physique des streamers et des sources à jet de plasma froid menée au LPP (Laboratoire de Physique des Plasmas, Paris) et d’autre part un volet dédié à l’oncologie mené au CRSA (Centre de Recherche Saint-Antoine, Paris) et au CRC (Centre de Recherche des Cordeliers, Paris). En un premier temps, cette thèse porte sur une étude fondamentale dédié à la physique de propagation et de contre-propagation des streamers générés dans des jets de plasma, en interaction avec 3 types de cibles métalliques : électrode annulaire à la masse, électrode plane à la masse et électrode grille à potentiel flottant. Ces cibles correspondent à des éléments pouvant être intégrés aux sources à jet de plasma froid en vue d’une utilisation thérapeutique, afin de garantir l’absence de risque électrique et thermique. A l’aide de diagnostics spectroscopiques, électriques et d’imagerie rapide, il a ainsi été possible de mettre en lumière l’existence de streamers négatifs se contre-propageant à des vitesses supérieures à celles des streamers incidents. Un modèle théorique de la contre-propagation a ainsi pu être élaboré. L’ajout d’une électrode grille à potentiel flottant entre la sortie du tube (source plasma) et l’électrode plane à la masse a permis d’identifier un phénomène de périodisation des streamers qui apparaît pour des conditions précises de tension et de distance : N streamers atteignant la grille (avec 1N entre 1 et 6) conduit à un unique streamer transmis atteignant la cible. Sur la base de mesures électriques et optiques, un modèle est proposé pour analyser les paramètres régissant cette périodisation. De cette compréhension approfondie des interactions « streamers-cibles », découle la possibilité de créer des sources à jet de plasma froid en vue de répondre à des applications oncologiques, notamment des catheters plasma utilisables par endoscopie. Deux modèles de tumeurs solides avec un mauvais pronostic ont ainsi été étudiés : le cholangiocarcinome (cancer des voies biliaires) et le cancer bronchique non à petites cellules (cancer du poumon). Dans le cas du cholangiocarcinome, des expériences in vitro ont démontré une efficacité antitumorale élevée, tout en présentant des avantages en termes de sélectivité biologique. Sur la base d’études in vivo menées sur des modèles murins et dans la perspective d’une applicabilité chez l’humain, un cathéter à plasma froid a été utilisé sur deux modèles précliniques : un ERCP trainer et un modèle anatomique post-mortem porcin. Il a ainsi été possible de montrer l’absence de risque électrique et thermique. En parallèle, l’analyse des effets du plasma froid sur le cancer du poumon non à petites cellules a fait l’objet de 9 campagnes in vivo menées sur des modèles murins au cours de cette thèse. Deux sources à plasma présentant des configurations d’électrodes différentes ont été comparées, les deux entrainant systématiquement des inflexions de croissance tumorale importantes (p-valeur < 1e-4). Un effet abscopal a aussi été démontré sur des modèles tumoraux ectopiques

    From Repeatability to Self-Organization of Guided Streamers Propagating in a Jet of Cold Plasma

    No full text
    International audienceIn this work, a jet of cold plasma is generated in a device supplied in helium and powered with a high-voltage nanopulse power supply, hence generating guided streamers. We focus on the interaction between these guided streamers and two targets placed in a series: a metal mesh target (MM) at floating potential followed by a metal plate target (MP) grounded by a 1500 Ω resistor. We demonstrate that such an experimental setup allows to shift from a physics of streamer repeatability to a physics of streamer self-organization, i.e., from the repetition of guided streamers that exhibit fixed spatiotemporal constants to the emergence of self-organized guided streamers, each of which is generated on the rising edge of a high-voltage pulse. Up to five positive guided streamers can be self-organized one after the other, all distinct in space and time. While self-organization occurs in the capillary and up to the MM target, we also demonstrate the existence of transient emissive phenomena in the inter-target region, especially a filamentary discharge whose generation is directly correlated with complexity order Ω. The mechanisms of the self-organized guided streamers are deciphered by correlating their optical and electrical properties measured by fast ICCD camera and current-voltage probes, respectively. For the sake of clarity, special attention is paid to the case where three selforganized guided streamers (α, β and γ) propagate at vα = 75.7 km•s-1 , vβ = 66.5 km•s-1 and vγ = 58.2 km•s-1), before being accelerated in the vicinity of the MM target
    corecore