5,284 research outputs found
Kosterlitz-Thouless and Manning Condensation
A comparison between the Kosterlitz-Thouless theory of metal insulator
transition in a two dimensional plasma and a counterion condensation in a
polyelectrolyte solution is made. It is demonstrated that, unlike some of the
recent suggestions, the counterion condensation and the Kosterlitz-Thouless
transition are distinct.Comment: 3 pages, uses multicol.sty, accepted to Physica
Improved real-space genetic algorithm for crystal structure and polymorph prediction
Existing genetic algorithms for crystal structure and polymorph prediction can suffer from stagnation during evolution, with a consequent loss of efficiency and accuracy. An improved genetic algorithm is introduced herein which penalizes similar structures and so enhances structural diversity in the population at each generation. This is shown to improve the quality of results found for the theoretical prediction of simple model crystal structures. In particular, this method is demonstrated to find three new zero-temperature phases of the Dzugutov potential that have not been previously reported
Dynamics in the Sherrington-Kirkpatrick Ising spin glass at and above Tg
A detailed numerical study is made of relaxation at equilibrium in the
Sherrington-Kirkpatrick Ising spin glass model, at and above the critical
temperature Tg. The data show a long time stretched exponential relaxation q(t)
~ exp[-(t/tau(T))^beta(T)] with an exponent beta(T) tending to ~ 1/3 at Tg. The
results are compared to those which were observed by Ogielski in the 3d ISG
model, and are discussed in terms of a phase space percolation transition
scenario.Comment: 6 pages, 7 figure
Discrete aqueous solvent effects and possible attractive forces
We study discrete solvent effects on the interaction of two parallel charged
surfaces in ionic aqueous solution. These effects are taken into account by
adding a bilinear non-local term to the free energy of Poisson-Boltzmann
theory. We study numerically the density profile of ions between the two
plates, and the resulting inter-plate pressure. At large plate separations the
two plates are decoupled and the ion distribution can be characterized by an
effective Poisson-Boltzmann charge that is smaller than the nominal charge. The
pressure is thus reduced relative to Poisson-Boltzmann predictions. At plate
separations below ~2 nm the pressure is modified considerably, due to the
solvent mediated short-range attraction between ions in the the system. For
high surface charges this contribution can overcome the mean-field repulsion
giving rise to a net attraction between the plates.Comment: 12 figures in 16 files. 19 pages. Submitted to J. Chem. Phys., July
200
Comparison of methods for estimating continuous distributions of relaxation times
The nonparametric estimation of the distribution of relaxation times approach
is not as frequently used in the analysis of dispersed response of dielectric
or conductive materials as are other immittance data analysis methods based on
parametric curve fitting techniques. Nevertheless, such distributions can yield
important information about the physical processes present in measured
material. In this letter, we apply two quite different numerical inversion
methods to estimate the distribution of relaxation times for glassy \lila\
dielectric frequency-response data at 225 \kelvin. Both methods yield unique
distributions that agree very closely with the actual exact one accurately
calculated from the corrected bulk-dispersion Kohlrausch model established
independently by means of parametric data fit using the corrected modulus
formalism method. The obtained distributions are also greatly superior to those
estimated using approximate functions equations given in the literature.Comment: 4 pages and 4 figure
Paraelectric and ferroelectric order in two-state dipolar fluids
Monte Carlo simulations are used to examine cooperative creation of polar
state in fluids of two-state particles with nonzero dipole in the excited
state. With lowering temperature such systems undergo a second order transition
from nonpolar to polar, paraelectric phase. The transition is accompanied by a
dielectric anomaly of polarization susceptibility increasing by three orders of
magnitude. The paraelectric phase is then followed by formation of a nematic
ferroelectric which further freezes into an fcc ferroelectric crystal by a
first order transition. A mean-field model of phase transitions is discussed.Comment: 5 pages, 4 figure
Nonlinear dielectric effect of dipolar fluids
The nonlinear dielectric effect for dipolar fluids is studied within the
framework of the mean spherical approximation (MSA) of hard core dipolar Yukawa
fluids. Based on earlier results for the electric field dependence of the
polarization our analytical results show so-called normal saturation effects
which are in good agreement with corresponding NVT ensemble Monte Carlo
simulation data. The linear and the nonlinear dielectric permittivities
obtained from MC simulations are determined from the fluctuations of the total
dipole moment of the system in the absence of an applied electric field. We
compare the MSA based theoretical results with the corresponding Langevin and
Debye-Weiss behaviors.Comment: 10 pages including 4 figure
Epistructural thermodynamics of soluble proteins
The epistructural tension of a soluble protein is defined as the reversible work per unit area required to span the interfacial solvent envelope of the protein structure. It includes an entropic penalty term to account for losses in hydrogen-bonding coordination of interfacial water and is determined by a scalar field that indicates the expected coordination of a test water molecule at any given spatial location. An exhaustive analysis of structure-reported monomeric proteins reveals that disulfide bridges required to maintain structural integrity provide the thermodynamic counterbalance to the epistructural tension, yielding a tight linear correlation. Accordingly, deviations from the balance law correlate with the thermal denaturation free energies of proteins under reducing conditions. The picomolar-affinity toxin HsTX1 has the highest epistructural tension, while the metastable cellular form of the human prion protein PrPC represents the least tension-balanced protein.Fil: Fernandez, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentin
Rescaling Relations between Two- and Three-dimensional Local Porosity Distributions for Natural and Artificial Porous Media
Local porosity distributions for a three-dimensional porous medium and local
porosity distributions for a two-dimensional plane-section through the medium
are generally different. However, for homogeneous and isotropic media having
finite correlation-lengths, a good degree of correspondence between the two
sets of local porosity distributions can be obtained by rescaling lengths, and
the mapping associating corresponding distributions can be found from
two-dimensional observations alone. The agreement between associated
distributions is good as long as the linear extent of the measurement cells
involved is somewhat larger than the correlation length, and it improves as the
linear extent increases. A simple application of the central limit theorem
shows that there must be a correspondence in the limit of very large
measurement cells, because the distributions from both sets approach normal
distributions. A normal distribution has two independent parameters: the mean
and the variance. If the sample is large enough, LPDs from both sets will have
the same mean. Therefore corresponding distributions are found by matching
variances of two- and three-dimensional local porosity distributions. The
variance can be independently determined from correlation functions. Equating
variances leads to a scaling relation for lengths in this limit. Three
particular systems are examined in order to show that this scaling behavior
persists at smaller length-scales.Comment: 15 PostScript figures, LaTeX, To be published in Physica
Fractional Equations of Curie-von Schweidler and Gauss Laws
The dielectric susceptibility of most materials follows a fractional
power-law frequency dependence that is called the "universal" response. We
prove that in the time domain this dependence gives differential equations with
derivatives and integrals of noninteger order. We obtain equations that
describe "universal" Curie-von Schweidler and Gauss laws for such dielectric
materials. These laws are presented by fractional differential equations such
that the electromagnetic fields in the materials demonstrate "universal"
fractional damping. The suggested fractional equations are common (universal)
to a wide class of materials, regardless of the type of physical structure,
chemical composition or of the nature of the polarization.Comment: 11 pages, LaTe
- …
