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Comparison of methods for estimating continuous distributions of relaxation times
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The nonparametric estimation of the distribution of relaxation times approach is not as frequently
used in the analysis of dispersed response of dielectric or conductive materials as are other immit-
tance data analysis methods based on parametric curve fitting techniques. Nevertheless, such distri-
butions can yield important information about the physical processes present in measured material.
In this letter, we apply two quite different numerical inversion methods to estimate the distribution
of relaxation times for glassy Li0.5La0.5TiO3 dielectric frequency-response data at 225 K. Both
methods yield unique distributions that agree very closely with the actual exact one accurately cal-
culated from the corrected bulk-dispersion Kohlrausch model established independently by means
of parametric data fit using the corrected modulus formalism method. The obtained distributions
are also greatly superior to those estimated using approximate functions equations given in the
literature.
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Broadband dielectric (also known as immittance or
impedance) spectroscopy is widely used to character-
ize materials and to help understand the mechanisms
involved in such challenging areas of condensed-matter
physics as conductivity, molecular relaxation, liquid-glass
transition etc. [1]. In this experimental technique an
electrical property of the material is recorded as a func-
tion of probing field frequency ν. Data may be ex-
pressed at one of the four specific immittance levels
(i) the complex resistivity ρ(ω); (ii) the complex mod-
ulus M(ω) ≡ ıωε0ρ(ω); (iii) the complex permittiv-
ity ε ≡ [M(ω)]−1; and (iv) the complex conductivity
σ(ω) ≡ ıωε0ε(ω) ≡ [ρ(ω)]−1. Here, ω is the angular
frequency ω = 2πν; ε0 is the permittivity of free space;
and ı =

√
−1.

Once a data set is acquired, it may be expressed
at an appropriate immittance level and then analyzed
to obtain valuable information about material pro-
cesses. Often employed procedures that have been used
to analyze frequency response data are (a) using the
Kohlrausch-Williams-Watt (KWW) approached derived
from stretched exponential behavior in the time do-
main [2, 3]; (b) the Havriliak-Negami empirical expres-
sion [4]; and (c) estimation of the distribution of relax-
ation times (DRT) inherent in the data [3, 5, 6, 7, 8, 9],
an approach not as commonly employed as the other two.
Unlike the KWW analysis of (a), procedure (b) is a data
fitting method that does not lead to added understanding
of the physical processes presented in the experimental
material. On the other hand, KWW analyses involve
fitting models whose parameters are all of physical sig-
nificance. Although they are useful for comparing fit pa-
rameters for various materials at different state variable
levels they are less appropriate for data involving several
DRTs associated with different physical processes.

The DRT approach of (c) is an elegant method for in-
vestigating the contributions of relaxing units to the to-

tal relaxation and for determining the influence of state
variables on the relaxation. In the presence of differ-
ent processes or broad relaxations, the DRT approach
is superior to the parametric ones since (1) no a priori

assumptions are needed, i.e., a sum of empirical expres-
sions etc.; (2) the actual distributions in a given data
set are initially unknown; (3) a DRT can be related to
various physical parameters of the system; (4) and when
there are two different overlapping relaxations present,
their depencies on state variables would be easy to iden-
tify and to observe the influence of the state variables
on the distributions. As an example, the dynamic com-
plexity of the relaxation system can be determined by
estimating its DRT and thus establishing whether it is
intrinsicly broadening (homogeneous) or a distribution
of responses (heterogeneous) [10]. A distribution may be
characterized as either discrete (composed of individual
points) or continuous, and DRT analysis can unambigu-
ously distinguish between these two possibilities [7, 8].
Recently, non-resonant spectral hole burning technique
has been employed to resolve distinct continuous distri-
butions experimentally in order to identify multiple re-
laxing domains in materials [11].

In this letter, we compare the results of two different
DRT inversion methods for analyzing a set of experimen-
tal frequency-response data that involves a continuous
distribution. We also compare the accuracy of two equa-
tions for estimating appropriate distribution functions
proposed by Böttcher and Bordewijk [5]. Although esti-
mation of discrete-point distributions is not an ill-posed
mathematical problem [7], distribution estimation of con-
tinuous distributions, the usual situation, is ill-posed. It
is therefore particularly important to assess the utility
and power of different DRT estimation procedures for a
well-defined data situation.

Experimental data, with M = 52 points, for the
Li0.5La0.5TiO3 (LLT) glass at 225 K [12], expressed as
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FIG. 1: (a) Real and (b) imaginary parts of the raw dielectric
permittivity of LLT at 225 K. The solid line and solid points
shows the full data, including electrode effects and that as-
sociated with ohmic conductivity. The open-circle symbols
show the predictions of a full complex nonlinear least-squares
fit of this data set, as described in the text. The subscript ’R’
in the axis labels indicates that the data are presented with-
out any transformation (raw data). The inset shows the same
data plotted at the complex resistivity level, and the arrow in
the inset indicates the direction of increasing frequency. The
vertical dashed line shows the division between the two types
of response present and defines the critical radial frequency
ωc.

the complex resistivity and dielectric levels, were found
to involve an appreciable component associated with elec-
trode polarization effects. LLT conducts by ionic hopping
and involves a finite dc resistivity, σ0 ≡ σ(0). Further
analysis of data for this material over a range of tem-
peratures established that both σ0 and the characteristic
relaxation time of the dispersion of the bulk material,
τo, were thermally activated with Tσ0 and τo having the
same activation energies [13].

Such behavior indicates that it is most appropriate to
identify the bulk dispersive response of this material with
a conductive-system dispersion of resistivity relaxation
times, rather than with a dielectric-system distribution of
permittivity relaxation times, one where σ0 would be nat-
urally interpreted as a leakage conductivity unrelated to
the bulk dielectric dispersion process. Since conductive-
system response has already been analyzed for this data
set [13], and since it has been shown by data fitting
that it may often be difficult to discriminate between fits
of conductive-system and dielectric-system models when
only a single data set is available[6], we have elected to
compare the two different DRT estimation procedures
by determining their dielectric-system DRTs from the
present data expressed at the complex permittivity level.
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FIG. 2: (a) Real and (b) imaginary parts of the dielectric
permittivity of LLT at 225 K after elimination of the con-
tributions of ohmic conductivity and electrode polarization
effects and generation of virtually exact KD-model data us-
ing LEVM. The axis identifiers are shown with a subscript
’mce’ denoting subtracted ohmic conductivity and electrode
effects.

The two analysis methods considered here will be des-
ignated I and II. Method I involves a weighted nonlinear
least squares approach for estimating dielectric distribu-
tion strength points, gi, at corresponding relaxation-time
values τi, with 1 < i < N [7]. It allows either discrete or
continuous DRTs to be estimated in terms of the {gi, τi}
values and their uncertainties, with the set of τi’s either
taken fixed or free to vary. Better results are nearly al-
ways obtained with τi’s taken free, as in the present work.
In addition, the data may be in temporal response form
or in the frequency domain involving complex response
or either its real or imaginary part. An extensive fit-
ting and inversion program named LEVM that includes
Method I is available for free downloads[14]. Method II
is based on a constrained least-squares with the Monte
Carlo procedure [8]. It leads to delta sequence distribu-
tions [15] when applied to discrete DRTs [8]. Recently,
a method rather similar to that of II has been indepen-
dently proposed, one that uses nonparametric Bayesian
statistics for solving similar inversion problems [16].
Since we are interested in the dielectric DRT for the

dispersive bulk relaxation process, it is important to elim-
inate the contributions to the data arising from partly
blocking electrode effects before estimating the DRT. To
do so, a KWW response model, the KD, involving a
stretched-exponential shape parameter βD, a characteris-
tic relaxation time τo, and a ∆ǫ strength parameter, was
used for fitting the original full data with inclusion of
free parameters to model the electrode effects, the high-
frequency-limiting bulk dielectric permittivity, ε∞, and
σ0 [17]. The fit was excellent and yielded the follow-
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FIG. 3: Various estimates of unnormalized distribution of re-
laxation times following from the data presented in Fig. 2.
Here the implicit scaling factor for these distributions was
∆ε. The thick solid line is the unnormalized KD-model dis-
tribution. The method I open-square symbols show points
estimated using the real part of that data and the open-circle
ones show those obtained from the imaginary part. The sizes
of the symbols were determined by the estimated uncertain-
ties of the fits. The many solid-stair lines show the results
of the method II estimation procedure using the full com-
plex data. The vertical dashed line here and in Fig. 4 shows
the critical time constant. For comparison, the inset presents
method II estimates using the raw data of Fig. 1.

ing rounded estimates for βD, τo, ∆ε, and ε∞: 0.547,
2.63 µ s, 137, and 112, respectively.
The precise fit values of these parameters were then

used in LEVM, omitting those of σ0 and the electrode
ones, to generate a set of M = 300 data points repre-
senting just the bulk part of the Kohlrausch response to
eight significant figures or better. This data set is used
below to estimate its DRT by the methods mentioned
above. In addition, given only values of βD, ∆ε, and a
set of logarithmically distributed values of τ for the range
from about 0.96 n s to 10 m s, LEVM was employed to
calculated highly accurate values for the KD DRT com-
parison with the inversion estimate.
The complex dielectric permittivity may be expressed

in terms of a general DRT formalism,

ε(ω) = ε∞ + (εs − ε∞)

∫ ∞

−∞

g(ln τ)d ln τ

1 + ıωτ
(1)

where, ε∞ ≡ ε′(∞) and εs ≡ ε′(0) (the quantity ∆ε ≡
εs − ε∞ is defined as the dielectric strength), and g(ln τ)
is the distribution function. For a delta sequence distri-
bution [15] Eq. (1) leads to simple Debye response [18].
Both applied methods I and II are based on Eq. (1)
and are further described in Ref. Macdonald [7] and
Ref. Tuncer [8], respectively.
In Fig. 1, the complex dielectric permittivity raw data

for LLT are presented without transformation. As ev-
ident in the inset of Fig.1a the data include two dif-
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FIG. 4: Comparison of several different normalized DRT es-
timates. Identifications are the same as those in Fig. 3 for
similar quantities. Shown are the exact KD-model DRT, the
method I real (�) and imaginary (©) data estimates, the
exponential smoothing of method II results (⋆), and approx-
imate DRT estimates calculated directly from the data of Fig.
2 using Eq. (2) (– – –) and Eq. (3) (– · –). The inset shows
method II estimates using the raw data of Fig. 1 compared
with the scaled exact DRT (all divided by a factor of 100).

ferent processes, with the right spur part representing
low-frequency electrode polarization effects. The dashed
vertical line (– – –) in the inset indicates the approxi-
mate crossover position (shown at 40 k rads−1) from bulk
dielectric system dispersion to conductivity and double-
layer effects [17]. Since all the open-circle fit points in
the figure enclose their corresponding solid data points
symmetrically, one may conclude that the fit is excellent.

After we remove the contributions of the ohmic con-
ductivity and electrode effects to the raw data, as de-
scribed above, the pure dielectric-system dispersion is
obtained and is presented in Fig. 2 and denoted by εmce.
This data set, implicitly involving the KD-model DRT,
was next used to estimate the DRT by the inversion
methods I and II. Some of these results are shown in
Fig. 3 and 4. The thick solid line is that of the KD
DRT with βD = 0.54657. Note that the data of Fig. 2
contain neither systematic nor random errors and thus
allow comparison of the utility of methods I and II with-
out such confounding factors. It is striking that the two
methods both yield very accurate estimates of the exact
DRT. The precision of the estimates obtained by method
I using the real part of the data (Fig. 3) is the best of the
results shown and is remarkably small, especially for the
points at and to the left of the peak. We should also re-
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member that increasing the number of randomly selected
τ values used in method II improves the DRT estimates;
∼ 25000 τ values were used in the present work.
Method II selects random τ values over a wider range

than those defined by the range of the original frequency
window. The range of the original data (εR) is about
2 k rads−1 < ω < 200 M rads−1 corresponding to 5 n s <
τ < 500 µ s, somewhat smaller than the τ range following
from the exact data of Fig. 2, as defined above.
In order to illustrate the utility of method II, its DRT

determined for the raw εR data is shown in the inset of
Fig. 3 with solid vertical lines and is compared to the
actual distribution. Note that the presence of electrode
effects results in an added distribution with a peak at
τ = 100 µ s. In addition, the distributions obtained from
the εR and εmce data sets are nearly the same for τ <
10 µ s except for the presence of a small peak of the εR
distribution estimate near τ ∼ 32 n s. This could possibly
be due to the raw data where no a priori assumption
is made of the presence of KD-model response (εmce).
Also note the effects of the relaxation-time cutoff for fast
processes at τ < 1 ps.
To further emphasize the utility of the numerical in-

version methods for estimating a DRT, we compare our
results with those of Böttcher and Bordewijk [5] in Fig. 4.
They derived approximate DRT expressions from the real
and imaginary parts of the dielectric permittivity and
their derivatives with respect to natural logarithm of an-
gular frequency (lnω). Two such approximation distri-
bution functions g are listed below.

g1(lnω
−1) = 2 ε′′(ω)(π∆ε)−1, (2)

g2(lnω
−1) = −∆ε−1 dε′(ω)/d lnω, (3)

where the Fig. 1 data fit result for ∆ε, 136.93, is used
along with εmce data set values. Clearly these expressions
lead to broader distributions and to far less accurate DRT
estimates than our inversion ones. In the inset of Fig. 4
method II DRT estimates obtained from the raw data
are again illustrated, together with those following from
the application of Eqs. (2) and (3).
In conclusion, two approaches for estimating DRT in

conductive and dielectric systems are applied to experi-
mental LLT dielectric permittivity data at 225 K. Both
methods are capable of yielding well defined unique dis-
tributions for a given data set.
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