785 research outputs found

    Measurement of the onset of MHD-turbulence caused by a step in the electrical conductivity in the channel walls of GALINKA II and comparisons with theoretical models

    Get PDF
    Messungen zum Einsetzen der durch eine stufenförmig verteilte elektrische LeitfĂ€higkeit in den KanalwĂ€nden von GALINKA II verursachten MHD-Turbulenz und Vergleich mit theoretischen Modellen Das Einsetzen der 2-dimensionalen MHD-Turbulenz von Scherschichten mit steilen Geschwindigkeitsgradienten wird untersucht. Durch die Wahl einer besonderen Verteilung der LeitfĂ€higkeit der WĂ€nde ist es möglich, Geschwindigkeitsprofile zu erzeugen, welche ihre StabilitĂ€t verlieren und ein zeitabhĂ€ngiges Wirbelmuster zeigen, sobald die Parameter kritische Werte ĂŒbersteigen. Die Experimente werden in einem "Horse Track" Kreislauf durchgefĂŒhrt, der in dem Dipolmagnet der MEKKA-Anlage eingebaut ist. Die Verteilung der elektrischen LeitfĂ€higkeit der WĂ€nde wird durch einen Kupferstreifen erreicht, der in die elektrisch isolierten WĂ€nde eingebettet ist. Die experimentellen Ergebnisse fĂŒr die StabilitĂ€tsgrenze und auch fĂŒr die spektrale Leistungsverteilung stimmen sehr gut mit den Ergebnissen eines theoretischen Modells ĂŒberein. Eine Potentialsonde mit 6x11 Meßpunkten wurde entwickelt. Sie dient als Instrument zur Erzeugung von direkten Momentanaufnahmen der Wirbelstruktur

    Ballistic electron transport in stubbed quantum waveguides: experiment and theory

    Full text link
    We present results of experimental and theoretical investigations of electron transport through stub-shaped waveguides or electron stub tuners (ESTs) in the ballistic regime. Measurements of the conductance G as a function of voltages, applied to different gates V_i (i=bottom, top, and side) of the device, show oscillations in the region of the first quantized plateau which we attribute to reflection resonances. The oscillations are rather regular and almost periodic when the height h of the EST cavity is small compared to its width. When h is increased, the oscillations become less regular and broad depressions in G appear. A theoretical analysis, which accounts for the electrostatic potential formed by the gates in the cavity region, and a numerical computation of the transmission probabilities successfully explains the experimental observations. An important finding for real devices, defined by surface Schottky gates, is that the resonance nima result from size quantization along the transport direction of the EST.Comment: Text 20 pages in Latex/Revtex format, 11 Postscript figures. Phys. Rev. B,in pres

    An overview of the ciao multiparadigm language and program development environment and its design philosophy

    Full text link
    We describe some of the novel aspects and motivations behind the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features can be turned on and off at will for each program module. Thus, a given module may be using e.g. higher order functions and constraints, while another module may be using objects, predicates, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of program optimizations. Such optimizations produce code that is highly competitive with other dynamic languages or, when the highest levéis of optimization are used, even that of static languages, all while retaining the interactive development environment of a dynamic language. The environment also includes a powerful auto-documenter. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in the format of a paper, pointing instead to the existing literature on the system

    Design and optimization of a new kind of manual wheelchair

    Get PDF

    Influence of strong magnetic field on distribution of solid particles in BiZn immiscible alloys with a metastable miscibility gap

    No full text
    International audienceCompositions located in the metastable miscibility gap of BiZn immiscible alloy was investigated under a high static magnetic field (HSMF). BiZn immiscible alloys with uniformly distribution of solid particles in the matrix were obtained under HSMF with 29 T. The results show that the solid Bi particles were uniformly distributed in the matrix because of complete suppression of Stokes sedimentation under the HSMF with 29 T. Segregation in the alloys solidified under 0 T, 1 T and 6 T was mainly owning to Stokes sedimentation, but that solidified under 17.4T and 29 T was dominated by nucleation, growth and Marangoni migration processes of liquid Bi droplets. The segregation mechanism under the effects of HSMF was discussed

    Coulomb drag between ballistic one-dimensional electron systems

    Full text link
    The presence of pronounced electronic correlations in one-dimensional systems strongly enhances Coulomb coupling and is expected to result in distinctive features in the Coulomb drag between them that are absent in the drag between two-dimensional systems. We review recent Fermi and Luttinger liquid theories of Coulomb drag between ballistic one-dimensional electron systems, and give a brief summary of the experimental work reported so far on one-dimensional drag. Both the Fermi liquid (FL) and the Luttinger liquid (LL) theory predict a maximum of the drag resistance R_D when the one-dimensional subbands of the two quantum wires are aligned and the Fermi wave vector k_F is small, and also an exponential decay of R_D with increasing inter-wire separation, both features confirmed by experimental observations. A crucial difference between the two theoretical models emerges in the temperature dependence of the drag effect. Whereas the FL theory predicts a linear temperature dependence, the LL theory promises a rich and varied dependence on temperature depending on the relative magnitudes of the energy and length scales of the systems. At higher temperatures, the drag should show a power-law dependence on temperature, R_D \~ T^x, experimentally confirmed in a narrow temperature range, where x is determined by the Luttinger liquid parameters. The spin degree of freedom plays an important role in the LL theory in predicting the features of the drag effect and is crucial for the interpretation of experimental results.Comment: 25 pages, 14 figures, to appear in Semiconductor Science and Technolog

    Coulomb drag between one-dimensional conductors

    Full text link
    We have analyzed Coulomb drag between currents of interacting electrons in two parallel one-dimensional conductors of finite length LL attached to external reservoirs. For strong coupling, the relative fluctuations of electron density in the conductors acquire energy gap MM. At energies larger than Γ=const×v−exp⁡(−LM/v−)/L+Γ+\Gamma = const \times v_- \exp (-LM/v_-)/L + \Gamma_{+}, where Γ+\Gamma_{+} is the impurity scattering rate, and for L>v−/ML>v_-/M, where v−v_- is the fluctuation velocity, the gap leads to an ``ideal'' drag with almost equal currents in the conductors. At low energies the drag is suppressed by coherent instanton tunneling, and the zero-temperature transconductance vanishes, indicating the Fermi liquid behavior.Comment: 5 twocolumn pages in RevTex, added 1 eps-Figure and calculation of trans-resistanc
    • 

    corecore