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ABSTRACT 

The onset of 2-dimension.c:tl MHD-turbulence on shear layers with steep velocity 

gradients has been investigated experimentally. By choosing a special 

distribution of the electrical conductivity of the walls it is possible to create initial 
velocity profiles which loose their stability and show time dependent vortex flow 

pattern once the parameters exceed critical limits. The experiments have been 

conducted in a "horse track" loop being installed in the dipole magnet of the 
MEKKA facility. The distribution of the electrical conductivity of the walls has 
been realized by a copper strip embedded in the electrically insulating walls. The 
experimental results of the stability limits as well as of the spectral power density 
agree very well with the results of a theoretical model. A 6xll potential probe 
array has been developed serving as an instrument to obtain a direct image of the 

vortex structure. 

KURZFASSUNG 

Messungen zum Einsetzen der durch eine stufenf'örmig verteilte elektrische 
Leitfähigkeit in den Kanalwänden von GALINKA II verursachten MHD
Turbulenz und Vergleich mit theoretischen Modellen 

Das Einsetzen der 2-dimensionalen MHD-Turbulenz von Scherschichten mit 
steilen Geschwindigkeitsgradienten wird untersucht. Durch die Wahl einer 
besonderen Verteilung der Leitfähigkeit der Wände ist es möglich, 
Geschwindigkeitsprofile zu erzeugen, welche ihre Stabilität verlieren und ein 
zeitabhängiges Wirbelmuster zeigen, sobald die Parameter kritische Werte 

übersteigen. Die Experimente werden in einem "Horse Track" Kreislauf 
durchgeführt, der in dem Dipolmagnet der MEKKA-Anlage eingebaut ist. Die 
Verteilung der elektrischen Leitfähigkeit der Wände wird durch einen 
Kupferstreifen erreicht, der in die elektrisch isolierten Wände eingebettet ist. Die 
experimentellen Ergebnisse für die Stabilitätsgrenze und auch für die spektrale 
Leistungsverteilung stimmen sehr gut mit den Ergebnissen eines theoretischen 
Modells überein. Eine Potentialsonde mit 6xll Meßpunkten wurde entwickelt. 

Sie dient als Instrument zur Erzeugung von direkten Momentanaufnahmen der 

Wirbelstruktur. 
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INTRODUCTION 

A small liquid metal loop called GALINKA has been developed in IATF by 

L. BARLEON and his team to study magnetohydrodynamic flows [ 1]. It consists of an 
integrated horizontalloop exposed to a steady vertical magnetic field of up to two Tesla. 

The aim of this work, defined during the early stages of my stay in IATF, was to 
develop a new GALINKA loop in order to study quasi two-dimensional 
magnetohydrodynamic flows. More precisely, we use this new loop to prove the model 
calculations of L. BÜHLER on instabilities driven in a reetangular duct by a non uniform 
conductivity of the Hartmann wall. The experimental results show good agreement with the 

analytical predictions, both concerning the linear stability analysis and the non linear 
calculations based on a quasi two-dimensional magnetohydrodynamic flow model. 

First we describe the experimental facility and outline the aim of the measurements. 
Then we deal with the comparison between the theoretical and the experimental approach. 
In conclusion we give an outlook on how to use the new GALINKA loop in order to get a 
better understanding on two-dimensional magnetohydrodynamic channel flows and their 
interactions with the lateral walls. 
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I- EXPERI~.'IENTAL DEVICE 

1-1 General presentation 

Fig. 1 shows a schematic sketch of the loop we bui1t, called GALINKA II. The whole 

loop is exposed to an uniform magnetic field with an available maximal field strength of 

2 T. Roughly speaking this loop consists of four parts. 

B 

Electromagnetic pump Flow meter 

(1) 

(2) (2) 

Test section 

(3) 

620mm 

Fig. 1: Sketch of the GALINKA II In/ Ga/ Sn loop in an horizontal plane. The loop consists 
of an electromagnetic pump section (1), two return sections (2) and the test section itself 
(3). The loop is exposed to a uniform steady vertical magnetic field perpendicular to the 
view plane which can be continously varied from 0 to 2 T. 

-The electromagnetic pump section (1) which is 620 mm lang. The conducting pump 

is made of two copper electrodes 300 mm long embedded in the lateral vertical walls of the 

section. The pump can be supplied by a D. C. current of 0 to 2000 A, which generates a 
velocity of up to 2 m.s-1. A flow meter made of two copper disks, 12 mm in diameter, 
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inserted in the lateral walls in the same section, gives the mean flow velocity by measuring 

the voltage gradient. 
- Two return sections (2) which close the loop. · The bends were designed to be as 

smooth as possible in order to avoid flow perturbations. 
- The test section itself (3), also 620 mm long. It can be easily removed from the loop 

and replaced by a section of different aspect ratio for the purpose of new experiments. Flow 

straighteners, made of insulating material, are inserted both at the inlet and outlet of the 
test section. Each flow straightener is 25 mm long thus the efficient length of the test 

section is in fact 570 mm. During the study starting September 1994 and ending 1995 we 
always worked with the same test section. More details on the test section are given in the 
next paragraph together with an outline of the experiments. 

I-2 Aim of the measurements 

The study of quasi two-dimensional magnetohydrodynamic flows (hereinafter 
refereed to as quasi 2D-MHD flows) and turbulence promotion by various techniques was 
first motivated at the IATF by the search for an improvement in heat transfer at the first 
wall of liquid metal cooled fusion blankets. We underline in the conclusions of this report 
that the new experimental metal loop also meets the requirements for more fundamental 

experiments in the domain of 2 D-MHD unstable and turbulent flows. 
Several ideas emerged in the seventies on the enhancement of turbulence in 2D

MHD flows. One of these was to promote shear layers in the flow by means of a non 
uniform conductivity of the Hartmann walls [2]. This non uniform conductivity may be 
obtained by inserting a conducting strip in the Hartmann wall of an insulated duct and 
this is what we have chosen. Fig. 2 shows a cross section of the test section. The section is 
60 mm wide and 30 mm high, and is made of a fibreglass reinforced Epoxy, an electrically 
isolating material. Two strips made of copper, 5 mm wide and 600 mm long are inserted in 

the middle of the top and bottom Hartmann walls. The strips are 35 IJm thick. This 
thickness has been carefully chosen in order to permit precise comparisons between the 

experimental results and the calculations performed by L. BÜHLER [3], [4] on this subject. 
The principle of the flow destabilisation can be explained as follows. For high 

Hartmann numbers the flow is bidimensional and divided in two regions, the core region 
where the current density is constant and the Hartmann layers where the current density 

depends on the wall conductivity. The induced currents are closing in the cross section of 
the test section. At the edges of the conducting strip, the electric currents enter the strip 
leading locally to a lower near-wall current density. 

The interaction between the magnetic field and this near-wall current sheet leads to 
Lorentz forces in flow direction. A friction force, due to viscous effects in the fluid, opposes 
this Lorentz force. The balance between the two forces defines the final flow velocity. 
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Copper strips Isolated walls 

30mm 

B 

60mm 

Fig. 2 : Cross section of the test section. In order to decrease perturbations of the flow by 
the loop itself, the cross section remains the same over the whole loop. This was not the 

case for the first GALINKA loop. The arrays in the middle plane present the shear velocity 

- profile due to the step of the electrical conductivity in the channel walls. 

The velocity is then reduced when the near wall current density decreases by means 
of an increased wall conductivity. A double shear layer is thus created in the flow by means 
of the copper strips inserted in the channel. The principle feature of the velocity profile is 
shown in Fig. 2. It can be shown ([3], [4]) that this shear velocity profile with two inflection 
points may become unstable leading to the formation of a vortex street. We perform 
potential measurements at the upper Hartmannwall in order to measure the local velocity 
field and to detect flow instabilities, 

I-3 The velocity measurements 

In the case of 20 MHD flows the electric potential gradient is linearly related to the 

velocity in the core of the flow (see for example [5]). Therefore we have developed a potential 

probe array in order to get a direct "image" of the velocity field generated by the shear flow 

inside the channel. This array is inserted in the top wall of the test section. The principle 

design can be seen in Fig. 3. In our case we have to encounter a particular difficulty. 
Because of the weakness of the expected signals at the individual potential probes, the 

measurements require high precision amplifiers. 
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1-3.1 Order of magnitude of the potential measurements 

As we have mentioned already, the direct current electromagnetic pump is placed, 

tagether with the whole loop, in a steady vertical magnetic field, which allows us to achieve 
a maximal velocity of the order of 2 m.s-1. Measuring the oscillation onset of the spanwise 

velocity proved to be an excellent procedure for determining precisely the stability 
threshold of the flow as a function of the Reynolds and the Hartmann numbers . 

. . . 
. . . . 

. . . . 
. . 

... - ...... -... ... -- ... -... ... - ......... ... .., .., .., .., .., .., 
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Fig. 3 : The test section and its top removable array of potential probes. 
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A typical magnitude of the electrical potentialtobe measured is given by: 

ß<l>=AX * B *V, 

taking: V= 10 mm.s-1 and B = 1 T, we get ß<l> = 0.01 V.m-1. The chcAce ofthebest spacing 

DX between two consecutive probes is the result of a compromise. On the one hand it 

should not be too small in order to get a measurable signal, which is not too noisy, and on 
the other hand it should not be too large in order to have suffi.cient precision on the local 

velocity measurements related to a given structure in the flow. We finally used a spacing of 
2.5 mm. This gives a typical order of magnitude of 25 J . .tV for the potential measurement. 

This is an acceptable value considering that in our case we are only performing isothermal 

measurements so that the signals are not subject to additional thermo-electric effects 
occurring in the measurement circuit. We developed two arrays of probes with this spacing. 
The first one with 23 probes is arranged in two rows of 10 probes in the flow direction and 
of three additional probes in the transverse direction. Fig. 4 displays the location of the 23 
probes in the test section. 

Copper strip 

I 

I 

I 
... 

-

1 ! End of the flow straighteners 
I 

I 1150 

i I ... 

0 (11) 

(2) 0 0 (12) 

(3) 0 0 (13) 

(4) 0 0 (14) 

Direction 
(5) 0 o (15) o (21 )o (22) o (23) of the flow 

(6) 0 0 (16) 

(7) 0 0 (17) 

(8) 0 0 (18) 
,, 

(9) 0 0 (19) 

(IO)o 0 (20) 

12 
.... 

Fig. 4 : Location of the probes in the 23 potential probe array (top view). The distances 

indicated on this scheme are non dimensionalized by the spacing of 2. 5 mm between two 
probes, which is also equal to the half width of the copper strip. 
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All the results reported here have been obtained with this first array. Fig. 5 shows a 
photograph of the second array with 6*11 probes. We use the same technique as for the 
first array. Thus each probe is made of one miniature coaxial heater rod. Only the inner 
nickel wire with diameter 0.1 mm is in contact with the liquid metal. The only difference 
between the two arrays concerns the common mass wiring. This point leads us to discuss 
the problern of the signal amplification in the next section. 

Fig. 5 : A photograph of the 6 X 11 potential probe array. 

1-3.2 Amplification of the signal 

Ten amplifiers were used together with the 23 probe array. These amplifiers had 
generously been lent by R. BOLCATO from the laboratory EPM-MADYLAM in GRENOBLE 
to enable us to get the first experimental results more quickly. Most of the measurements 
consist of potential measurements between two consecutive probes in a truly differential 
manner which helped to eliminate the common mode noise. We also tried to perform 
measurements with a common potential for the sheaths using these amplifiers and this 
specific array but the noise levelwas too high. This outcome was due on the one hand to 
the fact that no clear common potential was available and on the other hand to the fact 
that the amplifiers seem to be too sensitive to the environment (perhaps there was a 
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problern of separation from the electrical network). Nevertheless the use of those amplifiers 

helped us to define the requirements for a new generation of amplifiers developed in IATF 

by R. VOLLMER. Four of these new amplifiers have been already tested with the 23 probe 

array both for true differential and common ground measurements. In both cases the 
results are satisfactory though the common ground used for the preliminary 

measurements was not as good as expected for the 6*11 probe array. Hence for the latter a 
"star wiring" was performed in order to avoid perturbations. For this purpose each coaxial 
wire passes through a hole made in a copper plate of 5 mm thickness which lies directly on 

the probe array. Thus the electrical contact between the shield of each coaxial wire and 
the copper plate is ensured. One of the most central probes of the array is taken as 

common ground and is then directly welded to the copper plate. 
Each of the coaxial wires is linked to the input of its attached own amplifier. The 

output of each amplifier, (the gain is set at 500), is connected to a data acquisition board : 
a DAS 1801 HC board from Keithley driven by a 486PC. This board is configured with 
either 64 single-ended or 32 differential analogue input channels depending on the input 
configuration specified in the configuration file. The analogue input range in the bipolar 
mode is + /- 5 V. That leadstoamaximal accuracy of 4.88 11V when taking into account the 

gain set at 500 for each amplifier. Considering the ftxed spacing of 2.5 mm between two 
probes this leads for a characteristic strength of the magnetic field of 1 T to a maximal 
accuracy for the velocity measurements of 2 mm/ s. The maximum sampling rate between 

· two consecutive probes in a scan is 312 KHz. We take advantage of this high value as 
compared to the characteristic frequency of our phenomena which is within the range of 
10Hz, to perform quasi simultaneous measurements as Fig. 6 demonstrates. The software 
used for acquiring and processing the data is "TEST POINT" from CEC under WINDOWS.1) 

1) lt is also possible to enhance the accuracy using the programmable internal gain 

available with the Keithley board 1801 HC. We did not use this alternative for two main 
reasons, firstly, because the maximal acquisition rate decreases when using this internal 
gain, secondly because nothing is specified by Keithley about the performance of this 
internal amplifier. 
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Co C1 C2 CN-1 Co C1 C2 

1/fmax I 1/fmax J 1/fmax 1/fmax 
------ ----

~t =(N -1 )/fmax .. -
- .... 

Tacq. = 1/facq. 

Fig. 6 : The quasi simultaneaus measurements. In the so called "burst mode" the user 

defines only the time spacing between the beginning of two consecutive scans while the N 

consecutive channels are acquired within a time .:1t = (N-1)/fmax• fmax being the maximal 
acquisition rate depending on the board used, 312 KHz in our case. The quasi 
simultaneaus measurements are achieved only if the product R of the physical 
phenomenon characteristic frequency (10 Hz) with .:1t is small. The warst case is given 
when the 64 channels are acquired for purpose of "visualisation", but even in this case we 
have R = 2. 1o-3. 

1-4 Summary 

The aim of this first chapter was not to give a complete technical presentation of the 
experimental facility we built. For more details one should refer to the file entitled 
"GALINKA li" availab1e from K. J. MACK to whom I am very grateful for the construction of 
the loop. In the following section we will outline the associated technical problems 
wherever needed for understanding a particular result. 

The most important feature to be emphasised in this technical description is that 
GALINKA li provides a new flexible loop to investigate MHD flows. Its particular appeal is 
that the test section can be easily removed and replaced for the purpose of new 
experiments, (e.g. : multi-channel investigations, interactions between vortex and lateral 
walls and so on). Moreover the instrumentation (two different probe arrays are available) 
can be easily inserted in these new test sections. 
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II EXPERIMENTAL RESULTS 

In this section we compare our experimental results with the analytical 0 ... 1es 

obtained for the same configuration. These analytical results consist on the one hand of a 
linear stability analysis and on the other hand of non linear calculation based on a quasi 
2D flow model. The relevant model has been developed by L. BÜHLER [2,3] at the IATF. 
Before reporting and discussing the results we will focus on the related dimensionless 

numbers we use. 

11-1 Dimensionless characteristic numbers 

As in the notation used in [3,4] Re, Ha, and N denote respective1y the Reynolds 
number, the Hartmann number and the Interactionparameter based on the half width of 

the copper strip (L) : 

Re= (L V)/v 
Ha= B L (cr/pv)0.5 

N = Ha2jRe 

We use also the rescaled Hartmann number, denoted M, based on the half channel height. 
Defining "a" as the ratio between the height of the channel (2D) and the copper strip width 
(2L), we have the relation: 
M =aHa. 
Another important parameter is the conductance ratio "c" which compares the wall 

conductance to the liquid metal conductance: 

dcrwall c = ----'-'-'~ 
Dametal 

where "d" is the thickness of the conducting part of the Hartmannwall (the copper strip). 

In our loop the liquid metal used is the In/Ga/Sn alloy, so that we have for all 

experiments: 

cr = 3.27 10 6 n.m-1 
v = 0.34 10-6 m2.s-1 

p = 6360 kg.m-3 

The three values are given for 25 oc. 

The geometrical dimensions are : 

D = 15 mm (the half channel height), 

L = 2.5 mm (the half copper width), 

a = D/L = 6 (the aspect ratio), 
d = 35 ).Im (the copper strip thickness). 
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This leads for all our experiments to a conductance ratio: c = 0.04. The choice of the 

copper strip thickness that leads to this value for c is the result of a compromise which we 

will explain. As presented in [3], the characteristic time scale for the decay of vorticity due 
to Joule's dissipation , can be expressed: 

when taking into account the finite conductivity of the walls. We have then: 

for c << M-1 ==> 1 = M/N 
for M-1 << c<< 1 ==> 1 = (cNt1 
for c >> 1 ==> 1 = N-1 

(1) 

(2) 

(3) 

(classical for insulating walls) 

This last limit of the relation (3) indicates that, for high interaction parameters, vortices 
resulting from instability will be damped quickly when choosing a copper strip which is not 

too thick. In contrast, when a moderate value is chosen, this leads to a value of c in the 
range expressed in relation (2) that permits the observation of vortices even for large 
interaction parameters. In our case we have 

0.001 << M-1 << 0.004, so that: M-1 << c = 0.04 << 1. 

Thus, from an experimental point of view, once c is fixed, the only two parameters which 
can be varied are the velocity of the mean flow by means of the electromagnetic pump and 
the strength of the steady vertical magnetic field strength. 

11-2 Comparison with the linear analysis 

Fig. 7 displays the marginal stability curve in the (Re, M) plane. 

The Rec curve gives the dependence of the critical Reynolds number for the onset of 

the instability for increasing values on the rescaled Hartmann number M. 

The Sr c curve is the real part of the eigenvalues and corresponds to the phase 
' velocity. The subscript "c" stands for "critical" which means that the imaginary part of S, 

noted Si, is then equal to zero. Sr c is in fact equal to the propagation velocity of the 
' perturbation. 

The kc line gives the dependence of the critical wave number on M. Again the 

imaginary part of k is equal to zero at the onset of the instability. This wave number is 

normalised by the half width of the copper strip. We then have k = kexp L. Hereinafter the 

subscript "exp" will be related to an experimental dimensional value and the lack of 

subscript to a non dimensionalized value. 
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The points that can be seen on the curve are obtained from the experimental values 

of electrical potential. In the next section we focus on the procedure with which they have 

been obtained. 

11-2.1 Threshold of instability 

Fig. 7 displays three critical Reynolds numbers corresponding to M = 300, 566 and 

1000. Wehave to stressthat the value of M = 1000 is already close to the maximum value 
achievable. The maximum magnetic field strength of 2T gives M = 1167 and this is the 
upper limit of our experimental investigations. As far as the lower limit is concerned, we 
did not perform measurements for M < 300 because the signal was then at the lower 
operationallimit of the first generation of amplifiers. 

Theoretically, the velocity fluctuations in transverse and axial directions tend to zero 

when reaching the critical Reynolds and Hartmann number starting from supercritical 
values. Searching experimentally Rec at which the fluctuations are zero is impossible 
because the signal becomes too small and it is thus impossible to retrieve the signal clearly 
from the background noise. Therefore, for each value of M we performed a series of 
experiments with increasing Re. We calculated the standard deviation of the transverse 
velocity obtained from potential measurements. The extrapolation of the best fit curve gives 

· the value of the critical Reynolds number. Fig. 8 displays such a curve for M = 566. A 

linear extrapolation of this curve gives an approximate value of Rec. In this case Rec = 284. 
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Fig. 7 : The stability limit for GALINKA II, c = 0.04 and a = 6. 
Rec : critical Reynolds number, kc : critical wavenumber, Sr c : critical ratio of the 

' 
perturbation propagation to the mean velocity. Lines are according to the linear theory, 

symbols represent experimental values. 
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Fig. 8: The standard deviation of the transverse velocity as a function of the Reynolds 

number based on the measurement of ~<1>1 2 forM= 566. A linear extrapolation of this 
' curve leads to Rec = 284. 

11-2.2 Calculation of the critical propagation velocity 

We call "propagation velocity" the speed at which the perturbations of the flow travel 
downstream. lt is calculated by performing a cross correlation between two signals coming 

from different probes located on the same streamwise axis. Most of the time, the cross 

correlation is made between the probes as indicated in Fig 4 : ~<1>1 2 = <1>2-<1>1 and ~<l>g 10 
' ' = <t>1o-<t>g. The spacing between two measurements is then 2 cm. Again, because of the 

extremely low intensity of the signal, it is impossible to get a direct measurement of the 

propagation velocity just at the critical Reynolds number. So the propagation velocities are 
evaluated for slightly supercritical values of the Reynolds number. As we will see in § 11-3, 

the propagation velocity increases with the Reynolds number, so that the results we 

display here are certainly overestimated. 

11-2.3 Calculation of the critical wave number 

The instability occurs with a defined wave number. To determine this 

experimentally, we need on one hand the propagation velocity (obtained in the way we have 
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just described) and on the other hand the characteristic frequency of this instability. We 

have then: 

There is naturally a greater uncertainty for this derived quantity than in the two 
previous cases. There are two reasons for this. First this quantity is derived from measured 

quantities and secondly the determination of the perturbation frequency fexp· is difficult. 
Hence to obtain a readable spectrum we are forced again to consider values of Re greater 
than the critical value. Unfortunately the spectrum then already contains several 
dominating frequencies due to non linear effects. This explains the two values that we give 
for kc for M = 1000 in Fig. 7. The spectrum used to determine these values is shown in 
Fig. 9. 

11-2.4 Conclusion for the comparison between the results and the linear analysis 

Despite the small range of M investigated, we find good agreement between the 

analytical approach of the linear stability analysis of the flow and the experimental results. 
For the particular measurements we have to recall that we performed only 10 quasi 

· simultaneaus measurements so that we arenot able at this stage to extract images of the 
vortices from the data. Nevertheless the physical quantities we determined show that these 
vortices exist and can be traced. This proves moreover that the choice of the conductivity 

parameter "c" was correctly chosen, the damping is not too strong and that the main 
perturbation of the flow is indeed caused by the copper strip. It has been demonstrated 
thoroughly that the flow straighteners are efficient in homogenising the flow downstream of 
the bends in the loop. 

It is further of great interest to succeed in performing measurements at a lower 
value of the Hartmann number. Hence we choose a lower value of the interaction 

parameter. Fig. 7 displays the frontiers where the interaction parameter, N, is equal to 
unity. Normally, the linear analysis is only valid in the rangeN >>1, assuming 2D flows. 
Approaching this limit we will be able to detect some deviations from the theoretical 
predictions, which would be in fact the indication of an increasing three-dimensional 
behaviour. 

For the time being we use the linear analysis as a guide to interpret our results. We 
will now display some results beyond the stability limit. These results can be compared 
with analytical and numerical results, but as we shall see, it will now be more difficult to 
make camparisans for two main reasons. Firstly, because of the presence of lateral walls 
which are not fully taken into account by the model and secondly because of a high 

Reynolds numbers. For some values of M, which have been studied, the interaction 

parameter becomes low and the divergence between the experimental and theoretical 
approaches should indicate the Iimitation of the two-dimensional model. 
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Fig. 9 : Power spectrum of the transverse velocity for M = 1000, and Re = 594. The 
acquisition frequency is facq = 330 Hz, and the amount of data 8192. This spectrum shows 
the difficulties encountered when performing measurements near the critical Reynolds 

number. For this value we notice two dominants peaks at 3.1 and 4.1 Hz. This signal is 

non-filtered and therefore we find a sharp peak at 50 Hz. The other spurious peaks seem to 

be related to aliasing phenomena. Hence the acquisition frequency is only 330 Hz which is 

not enough to take into account the parasitic frequencies coming from the magnetic field 
power supply. These frequencies were noted tobe harmonics of 150Hz during preliminary 
tests performed with a higher acquisition frequency. 
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11-3 Non linear behaviour 

In a first part we display and discuss, the evolution of the ratio of the propagation 
velocity to the mean velocity, (hereinafter refereed to as velocity ratio), and of the 

wavelength as a function of the Reynolds number. We investigate this dependency for three 
different values of M. The second part deals with the power spectra obtained from our 
experiments. 

11-3.1 Velocityratio and wavelength 

Fig. 10, exhibits the variation of the velocity ratio with the Reynolds number for 
M=300, M= 566 and M = 1000. In the three cases this ratio can be seen to increase for 
increasing Reynolds numbers. It is noteworthy that the velocity ratio variation obtained for 
the lowest M is somehow different from the two others. Hence, for the two larger values the 
ratio reaches at the critical Reynolds number the value predicted by the linear analysis, 

close to 0.6. This can also be seenon Fig. 7. In cantrast the ratio is higher than predicted 
for the case M=300. We will interpret this discrepancy after presenting the variation of the 

wavelength with the Reynolds number. 

Fig. 11 gives the wavelength variation with Reynolds number for M=300, M= 566 
and M = 1000. In the three cases the characteristic wavelength of the perturbation is 
increases for increasing Reynolds numbers. For the three cases we observe a change in 
the variation above a critical value for the wavelength. This non dimensional critical value 
is about 15. The change is particularly dramatic with the lowest value of M, namely M = 

300. In this case the wavelength starts to decrease for a certain range of Re. In the other 
two cases the slope of the variation is reduced significantly beyond this critical wavelength. 
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In order to explain the phenomena we observed, we have tobe precise about what 
we mean by the measurement of a characteristic wavelength associated with l.i1e pair of 

parameters (Re, M). Forthis purpose, we first display a numerical calculation performed by 

L. Bühler with his quasi 2D-MHD model for high interaction parameters. Hence Fig. 12 
gives an instantaneous iso-vorticity pattern in the test section for (Re, M) ::::; (1000, 566). 

The origin of the coordinate system on the left corresponds to the end of the flow 
straightener in the experimental set up. The ordinate origin is ta.ken in the middle of the 
copper strip. 

0.0 50.0 100.0 150.0 200.0 

Fig 12 : Chart of the vorticity in the test section as computed by the quasi 2D model of L. 
BÜHLER for Re ::::; 1000 and M = 566. The physical test section length (between the two flow 

· straighteners) is 228. The reetangular shape on the graph indicates the array probe 

location for most of the experiments (measurements between 150 and 158). Using the 
experimental opportunity to reverse the flow we also performed some measurements 
between 70 and 78. Then we were able to check the wavelength increase in the flow 
direction for a fixed cou ple of parameter (Re, M). 

As we can see from this pattern, the wavelength increases in the direction of the flow from 

left to right. The black reetangular marker, indicated by the vertical arrow, shows the place 
where the probe array is located for most of the measurements. We see that we measure a 
wavelength at a defined place. It can be assumed that the wavelength remains constant 
across the extent of the probe array. Nevertheless, the spatial evolution of the wavelength 
demonstrated by this calculation was checked by means of an additional experiment. Since 
it was impossible to change the probe array location, we reversed the power supply of the 

electromagnetic pump. The resulting reverse flow permits us to measure a mean 

wavelength at a distance from the origin between 70 and 78, instead of 150 and 158 as in 

the previous case. We then compare these experimental results with the calculation. The 
numerical calculation gives for the two locations 

and 'A 150 ::::; 15 respectively 

As far as the experimental results are concerned we find 

A7Q = 11 + /- 1 and AlSO= 16.5. 
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The uncertainty found for 70 originates from the fact that the associated experimental time 
spectrum exhibits three peaks which are uf the same order of magnitude for the pair of 
parameters (Re, M) considered here. Nevertheless we can conclude that this additional 
experiment confirms in general the wavelength growth in the flow direction. 

To summarise, we can say that because of the convective nature of this instability, 
for given parameters (Re, M), the characteristic wavelength increases from the critical size 
to a maximum value controlled by the distance between the copper strip and the lateral 
wall. This observed phenomenon agrees well with the basic tendency of general 2D
turbulent flows to initiate the emergence of bigger and bigger structures. 

In order to understand what the dominant parameters are which govern the change 
in the wavelength for increasing M or Re we show in Fig. 13 the wavelength as a function 
of the parameter Re/M which is the characteristic Joule's dissipation time. In fact this 
parameter is found to depend on the conductivity of the Hartmann wall as seen in § II-1. 
However we are dealing here only with the limit of non conducting walls. This model 
assumption is justified because in the non linear case the major part of the vortex is no 
more under the influence of the central copper strip. 
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The diagram reveals a nearly linear dependence between the wavelength and the 

Joule's cirssipation time below a wavelength threshold which is about 13. Therefore we 
conclude that the growth rate of the wavelength is controlled mainly by the friction due to 
Joule effects at least below the threshold. Above this particular value the wavelength can 
increase further but at a lower rate. This is at least observed for the case of M = 566 and M 

= 1000. As the wavelength threshold is very close to the half width of the channel (12), we 

can suppose that the change in the Re/M-dependence is the consequence of the onset of a 
possible interaction with the lateral walls. 

As far as the peculiar behaviour for M = 300 is concerned, we believe that it may be 
explained by a breakdown of the quasi 2D-behaviour. Forthis value of M, the experiments 
are performed for Reynolds numbers in the range 300 to 3000. This corresponds to a range 
of interaction parameters N between 8.3 and 0.83. Keeping this low rangein mind, we can 
explain the higher velocity ratio observed in this case as compared to the theoretical one by 
a purely hydrodynamic analogy. Let us assume a 2D hydrodynamic vortex near a wall as 

shown in Fig. 14. Given the distance "a" between the vortex and the walland a vorticity "f" 

for the vortex considered it can be shown (see [6] for a review on the problern of vortex 
interactions with walls) that the ratio of the propagation velocity to the outer flow velocity is 
given by 

Va/Uo = 1- f/(4 a Uo), ifthe vortex rotates in the way indicated Fig. 14, and 

Va/Uo = 1 + r /(4 a Uo), in the other case . 

.. 
Uo 

a 

Wall 

Fig 14 : Diagram of a vortex in a uniform flow above a rigid wall. 
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It means that in the first case the vortices propagate with a lower velocity than the 

flow velocity. Then one obtains for a particular distance a: the bigger the vorticity, the 
slower is the propagation velocity. Let us apply this result to the interaction of the vortex 

with the copper strip. 

Of course in this case there is no wall anymore but the velocity under the copper 

strip is nearly zero because of the Joule dissipation so that the same kind of phenomenon 
might occur as in the case of rigid walls. The shear layers generate vortices which rotate 
the way indicated in Fig. 14, when replacing the wall by the edge of the copper strip. Then, 
it is not surprising that the propagation ratio we measured is smaller than 1. But in the 
case of small interaction parameters, when the breakdown of the 2D model can be 

assumed, the 2D model will overestimate the vorticity of a given vortex, leading to an 
underestimation of the propagation velocity by the theory. This may explain the 

discrepancy that can be directly seen in Fig. 7. Continuing with the same point of view, we 
can say that when the size of the vortices reaches the half width of the channel they can 
interact strongly with the lateral wall. This time the interaction will lead to a higher 
propagation velocity than that of the flow. This phenomena will lead to a strong 
deformation of the vortex. Again this is more easily observed in the case of low M number 

where the maximum size of the vortex is reached for a lower Reynolds number. We think 
that this phenomenon can explain the difficulties we encountered when measuring a 

· defined wavelength in the case M = 300 for the highest achievable values of the Reynolds 
number. Fig. 15 sums up this last idea. 
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Fig. 15 : Principle of a vortex elongation due to interactions with 
the bounded experimental domain. 

II-3.2 Power spectra 

As we have seen before, time series measurements at one particular point or the 
correlation between two signals taken at different locations are the basic tools used to get 
the results previously displayed. As far as the search for the wavelength is concerned, an 
additional assumption is needed : the so-called Taylor's hypothesis. We will consider in 
this chapter some examples of time series measurements in order to explain what the main 
results are but also what their limitations are. The first series of measurements was 
performed in a relatively uniform manner as far as the acquisition rate and the data 
amount are concerned. However they do not always meet the ideal requirements for the 
purpose of comparison with the numerical results. This will logically lead later to 

conclusions in this report about what measurements should be performed in the futurein 
order to get a better understanding of MHD instabilities and particularly a better insight 
into the link between the turbulence they generate and the increase of heat transfer that is 
initiated. 
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Il.3.2.1 Comparisons between experimental and numerical results 

Most of our measurements were performed with the same sampling frequency and 

the samenurober of acquired data: (facq.• Nctata) = (330, 8192 = 213). The main reason for 
the choice of this pair of acquisition parameters is the following. As already mentioned, 
these measurements were performed without any filtering. Hence we have to take into 
account the parasitic peaks which are coming from the power supply of the magnet. The 

dominantpeakwas observed tobe located at 150Hz. Therefore when choosing 330 Hz as 

the acquisition frequency, we avoid aliasing effects which could come from this peak. As far 

as the amount of data is concerned, for most of the measurements we stay with 8192 data 

per channel. It has to be recalled that for each pair of parameters (Re, M) we studied, a 
quasi-simultaneaus measurement on ten channels was performed. Therefore each 
experimental file has an amount of 81920 data. From a technical point of view, the problern 
is not really the storage capacity but rather the access time to the hard disc which is 
becoming too long, diminishing the efficiency of the data treatment. 

When performing FFT on the data file, the amount of data per channel 8192 is a 

necessary minimum to get a satisfactory precision for the final power spectrum. The Df 
resolution for a given data file is given by : 

with: facq.: 

Nctata: 
Cwindow: 

M= (facq·/Nctata)* ~dow 

the acquisition frequency 
nurober of data, 
a coefficient > 1 depending on the window used. 

For the purpose of windowing we used a Blackman-Harris window. This window is 
suitable for investigating steep spectra with minimum perturbation of the sample edges [6]. 

The Cwindow coefficient is then equal to 2. Despite the use of a window the spectrum will 
display some spurious non physical peaks when one does not perform an averaging 
operation. This averaging operation will be especially required when searching for inertial 
range in the power spectrum as we will see later on. 

An averaging operation will consist of: 

* dividing the file in n equal pieces of data, 

* multiplying each of them by the Blackman-Harris window, 

* taking the square of the FFT of each pieces, 

* taking the average value of these squared FFT. 
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We also take the Qpportunity of making an overlapping between the successive 
sequences of data. This helps to increase the number of averaging sequences without 

increasing (in an arithmetic meaning) the frequency resolution f. In our case each sample 
overlaps the previous one by 25, 50, or 75%. Again we advise the reading of [7] to have a 

precise view on problems related to windowing and averaging on FFT. 

The choice of the number n of equal sequences of data depends on the aim of the 

measurement. For the purpese of comparison with the computational results from the 
quasi 2D-model, taking into account the restricted available amount of data per channel, 
the number n of sequences of data to average should not be too large in order to avoid a 
lack of precision coming from a too large resolution in frequency. This problern can be 
understood through Fig. 16 and 17. They give the numerical and the experimental power 
spectrum respectively for the samepair of parameters (Re, M) = (500, 566). As far as the 

numerical results are concerned the data file available is characterised by the pair (facq., 

Ndata) =(111.2 Hz, 6144 data). In order to get a readable spectrum we perform an 
averaging with 9 pieces of 2048 data. The overlapping is 75 %. Taking into account the fact 
that we used a Blackmann Harris window, this gives for the spectrum shown in Fig. 20, a 
frequency resolution of the order 

M=O.ll Hz. 
To be able to compare the computational with the experimental results we have to work 

· with a roughly equal Df for the experimental power spectrum. As already mentioned before 

the experimental data file is characterised by the pair (facq.; Ndata) = (330Hz, 8192 data). 
Then performing an averaging with 5 sequences of data and an overlapping of 75% gives 

.M= 0.16 Hz. 
As we can see from Fig. 16 and 17 these Df are small enough to permit the 

comparison of the values of the largest peak in the two cases. But in fact, for the pair of 
parameters (Re, M) we display here (500, 566), the behaviour of the flow is already strongly 
non linear. This means that both spectra exhibit in fact more than just one characteristic 
peak. Most are here hidden by a broadband spectrum because of the lack of resolution. In 

order to get a more precise comparison between the numerical and the experimental 

approach a smaller .M is needed. From an experimental point of view we can afford this by 
means of a larger amount of data or lower data acquisition frequency. This last opportunity 
can only be achieved when filtering the signal in order to avoid perturbing aliasing 
phenomena. 
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Fig. 16: Power spectrum as calculated from the numerical results for the pair of 
parameters 

(Re, M) = (500,566). 

Fig. 17 : Power spectrum as calculated from the experimental results for the pair of 
parameters 

(Re, M) = (500,566). 
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II-3.2.2 Power spectra and tuJ. bulent behaviour 

We now focus on spectra obtained for higher values of the Reynolds number. In this 
case, the flow is expected to show turbulent features. In the case of an isotropic 
homogeneaus 2D turbulence forced at a given wave number (ki)· Kraichnan [8], taking into 
account the ideas developed by Kolmogorov for three dimensional turbulence, shows that 
the spatial power spectrum is characterised weil by a double inertia range. One 
corresponds to an energy cascade from the wave number ki to higher wavenumbers. The 
other is associated to an inverse energy cascade from the wave number ki to lower 
wavenumbers. The proof of the existence of these inertia ranges has always been a big 
challenge from an experimental point of view, because precise measurements are required 
over, at least, one decade for the wavelength magnitude (see also the conclusion for this 
purpose). 

We have to stress that in our case we are no Ionger dealing with the idealised case of 
2D-homogeneous and isotropic turbulence, since in our experiments the flow is strongly 
confined by the lateral walls. Nevertheless, we believe that the spectral analysis can be a 
useful approach to get a better understanding of the physics related to this confined flow. 
Therefore we present now, by means of an example, the particular cases which have been 

· taken in order to o btain correct power spectra. 

3.2.2.1 Spectra compensation taking into account the spacing between the 
potential probes 

This point is essential in order to retrieve valuable information from power spectra. 
The need for the compensation of the spectrum can be explained as follows. From an 
experimental point of view we are not measuring a local velocity but rather a mean velocity 
between two electrodes. And this has a big influence on the resulting spectrum. See for 
example [9]. 
Hence the measured velocity V meas. is given as a function of the true physical velocity 

Vtrue by: 

Introducing the reetangular window, P(a) : 

P(a) = 0 when II > X/2, 

and P(a) = 1 when II < X/2, 
we then have : 

l x2 

Vmeas.(x) =~X JP(a)Vtrue(x- a)da 
xl 
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Taking the Fourier transform of the two terms of this equality we get: 

A 1 ,... A 

Vmeas. = LUC P(k)Vtrue(k) 

where k is the wave number and : 

. (kLUC) Sln --

P(k) = LUC 
2 

lclX 
2 

Wehave then finally the following relation between the real power spectrum 
Etrue(k) and the measured power spectrum Emeas.(k): 

Unfortunately there is a lack of precision in numerous papers that prevents the 
reader from knowing whether this correction had been performed or not. As we will see 
later on this can have a strong effect on the slopes observed in the power spectra. 

3.2.2.2 The Taylor's hypothesis 

To get a spatial power spectrum in terms of k, the most direct way is to use a line of 
potential electrodes regularly spaced. This will provide a one dimensional power spectrum 
in the sense that it is calculated with only one component of the velocity in the plane. It 
can be shown that when the power spectrum exhibits apower law, the one dimensional 
spectrum will exhibit the same one. (See for example [5] for a summary of this kind of 
notation). In the case of the first series of measurements we use the 23 probe array 
tagether with a bank of 10 amplifiers on one card. The wiring was suchthat only 4 quasi
simultaneaus measurements were performed on a line. Therefore it would have been 
nonsense to search for a spatial power spectrum with so small a number of measurements. 
(This would no Ionger be the case with the new probe array that will allow 11 individual 
measurements on a streamwise line.) Accordingly the spectra we get were obtained using a 
one point time series measurement and assuming, in the first order, the validity of the 
Taylor's hypothesis. This latter means that when the velocity fluctuations of a given flow 
are small as compared to the mean velocity of the flow V mean• one can correlate the time 
fluctuations u(t) to the spatial fluctuations u(x/Vmean)· This means that a wave number 
can be associated to a characteristic frequency given by a local time measurement in the 

flow. The relation is given by: 
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Then, if the validity of the Taylor's hypothesis is assumed, the time power spectrum 
will exhibit the same slope as the corresponding spatial spectrum. The compensatior.l of the 
spectrum due to the finite potential probe spacing can also be taken into account in the 
temporal domain spectra. Next we display an example of temporal power spectrum Fig. 18 
for the following pair of parameters : (Re, M) = (3000, 300). The figure displays both the 
original and the compensated power spectrum. The difference between the two spectra at 
higher frequencies shows clearly the error that can be made, when one does not take into 
account the finite spacing between the potential probes. 

In order to obtain this smooth spectrum, the data file we used was characterised by 
the following pair of acquisition parameters : (facq.• Ndatal = (220 Hz, 32768 = 215 data). 
We then perform an averaging of 253 sequences of 512 data with an overlapping of 75 %. 
The ßf resolution is then about 0.84 Hz. 

Fig 18 : Power spectrum as calculated from the experimental results for the pair of 
parameters (Re, M ) = (3000, 300).The upper line corresponds to the compensated 
spectrum, the other one to the original. The origin of the peak at 50 Hz is clear. The peak at 
70 Hz and at 80 Hz are due to aliasing phenomena coming from the lower acquisition 
frequency used in this case. (220 instead of 330 Hz). 
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As can be seen on Fig. 18 a mearJ." slope can be extracted from the log-log 
representation of the spectrum. This slope is approximately -3.5. The main conclusion is 
that we were able to observe an inertial behaviour over a frequency decade 
(correspondingly over a wavelength decade when assuming Taylor's hypothesis). Hence the 
dominant frequency in this spectrum is about 10Hz. This corresponds to the frequency at 
which the energy is injected by means of the instability occurring due to the copper strip in 
the middle of Hartmann wall of the channel. This frequency corresponds to a non 
dimensional wavelength of 17 as can be seen from Fig. 11 which displays the variation of 
the wavelength with the Reynolds number for the value of M = 300 we have considered 
here. The maximum frequency of 100 Hz which is displayed here corresponds to a 
wavelength of 1. 7. This value is still significantly !arger than the probe spacing giving the 
normalisation of the wavelength. 

No inverse cascade is observed. This is quite logical if one considers the following 
argument. As we have seen from Fig. 12 which displays an example of the results obtained 
by a numerical approach, the wavelength increases clearly in the direction of the flow. This 
agrees weil with the basic tendency of 2D flows to generate larger and larger structures. 
But as we have concluded from the study of the changes of the wavelength with an 
increasing Reynolds number, the presence of lateral channel walls inhibits the unlimited 

· growth of the wavelength. For the pair of parameter (Re, M) = (3000, 300) we consider here, 
the mean wavelength has already reached the maximum size. It can then be concluded 
that the injection of energy is made at this maximum scale depending on the channel 
width. Therefore the mechanism of inverse cascade does not apply due to the presence of 
the lateral walls. 

At this stage, it is difficult to extract more from this temporal power spectrum for at 
least the two following reasons. 

First, there is still the lack of theoretical results associated with this kind of strongly 
confined turbulent MHD flow. The main feature that is actually not taken into account in 
the quasi 2D numerical model is the strong interaction that might occur between the 
vortical structures and the outer wall. Hence, as we have seen before, for high Reynolds 
numbers, the vortices initiated by the primary shear are reaching the lateral walls and 
certainly start to interact. This has already been shown by a 3D numerical model 
developed by L. Lebaueher [10] who performed some calculations for comparison with our 
experimental data. These computations show that even for moderate Reynolds numbers, 
an interaction between the primary vortex and the side layers can occur. Hence, it is 
numerically observed that once the primary vortex had reached the outer wall, the 
interaction with the side layer initiates secondary vortices which can even become 
predominant in the flow. The complexity of these events shows the need for obtaining a 
vorticity distribution image from the experiments in order to compare these images directly 
with the numerical predictions. By now, the two-line measurements we performed permit a 
check on the validity of the linear analysis and also of some non linear features. Our 
measurements have been performed particularly close to the central copper strip. However 
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following the transverse direction from the copper to the outer wall, the dominant physical 

phenomena of the flow seem to change drastically. 
We hope that the use of the new 6*11 probe array will help to provide a bet~~r 

understanding of these yet unidentified phenomena. 

Secondly there is a limitation due to the use of Taylor's hypothesis. In fact, in our 

case its use is quite difficult to justify. Following R. Leboeuf and R. Mehta [11], the four 
main causes for the breakdown of Taylor hypothesis have been identified as : 

- temporal evolution of the flow field, 
- non uniformity of propagation velocity, 
- anisotropy produced by the primary shear, 
- aliasing due to an unsteadiness in propagation velocity. 

It is then difficult to justify the application of the Taylor's hypothesis for our case. Firstly 

there is a flow anisotropy induced by the primary shear in our case; and secondly the non 
uniformity of the propagation velocity might be important. Therefore, as we have just 
realised, at least above a critical Reynolds number, the primary shear due to the copper 

strip, induces vortices whose size is of the order of the channel width. If the vorticity of 
these structures is high enough, they can induce a kind of secondary flow. The latter will 
then lower the flow velocity in the region near the copper strip edges and aceeierate it near 
the outer wall. Then the smaller vortices, if they exist, will be convected by the modified 

· flow. The basic mechanism is sketched in Fig. 19. We see that it finally leads to different 
propagation velocities depending on the size and on the location of the considered flow 
structure. 
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Smaller structures advected by the induced flow. 
The propagation velocity is lower than the one of 

the primary vortex 
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0 

Fig. 19 : Sketch showing the influence of the main vortex on the propagation velocity of the 
smaller structures. 

We can try to understand what is the main consequence of the change of the 
propagation velocity on the slope of the temporal power spectrum. Two cases are then to be 
considered depending on the transverse location of the probe. 

First, the probe is located near the copper strip (this is the case of the measurement 
displayed in Fig. 18). As we have just explained, the propagation velocity would then be 
lower for the smaller structure. When applying Taylor's hypothesis, which associates to a 
given frequency a defined wave number by means of a linear relationship, this implies that 
we underestimate the values of k associated with the higher frequencies of the spectrum. 
Then we think that a spatial power spectrum obtained with a measurement along a line 
located near the copper strip in the streamwise direction will display a lower slope for the 
inertia range than the one found for the temporal power spectrum. 

Secondly, the probe is located near the outer wall. The velocity of the smaller 
structures would then become higher than the mean propagation velocity of the larger 
vortices. We then obtain the reverse result from the previous case. A spatial power 
spectrum obtained with a measurement along a line located near the outer wall in the 
streamwise direction will display a larger slope for the inertia range than the one found for 
the temporal power spectrum. 
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111-BEFORE CONCLUDING : A GLIMPSE AT 2D TURBULENCE RESEARCH 

Many investigations are now being performed to get a better insight into the 
dynamics of vortices in 2D-flows. This is motivated by the number of scientific fields 
concerned with this particular field of fluid dynamics, e.g. meteorology, oceanography, 
fusion or metallurgical applications working with strong magnetic fields. 

The classical approach of 2D-turbulent flows was developed by Kraichnan, taking 
into account a theory derived some years before by Kolmogorov for 3D-turbulent flows. In 
both cases, the underlying idea is to consider that the flow forced by the inertia dominating 
effects behaves in a self-similar manner within a certain spatial scale range. It means that 
no preferential scales are detected in the flow except for the scales associated with the 
limits of the inertia range. The characteristic of this inertia range concept in the energy 
spectrum of the flow must be simple power laws for the energy decrease with increasing 
wavenumbers. 

Consequently, for at least two decades, the experimental challenge in this field was 
to check this nice elegant theory. Unfortunately, it was not so easy to perform. 

The main problern is in fact the finite range of observable scales. This range is 
always bounded from above by the maximum size of the experimental facility and bounded 
at the lower side by measurement limitations which in fact come mostly before the viscous 
scale becomes important. 

A second point is a more philosophical one. It consists in claiming that the 
connection between a given theory and experimental results is not only a matter of basic 
comparison. For instance a model, with its simplicity and its mathematical efficiency can 
be so attractive that finally it could distract us from the reality ... if there is any. Quantum 
mechanics has already made us understand that the reality depends on the observer from 
an experimental point of view. Without involving any quantitative point of view, we can 
nevertheless additionally say that the observer influences the reality by the subjective view 
he has adopted with a given theory. Be careful! It does not mean that he is cheating by the 
experimental results, (it happens however sometimes!). It only means that, the physical 
reality can be seen through different filters brought by the observer himself. Hence, the 
observer, however open-minded he may be, cannot observe any physical phenomenon 
without having a preoccupation of interpretation. This preoccupation could either originate 
from a given theory, or from his own personal intuition. This last case is not yet our 
purpose, so we willlay it aside. The problern occurs when the filters become so strong, that 
they inhibit the emergence of new ideas. It is then useful to change ones point of view to 
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make a new step towards the insight of the physics of a given phenomenon (stated that the 
principal mission of a physicist is to question and not to live comfortably with a peaceful 
well-established theory). ·~ 

In the case of 2D-turbulence, this change in the point of view happened roughly ten 
years ago. It is the consequence of the answer given by the scientific community to the 
following question : Are you really sure that there is no preferential scale in the flow? It is 
quite impossible to say exactly who was the first to raise this question. Nevertheless, the 
weight of this very practical point of view was not negligible in the balance. Hence we can 
roughly identify the following process. 

First step. New theoretical ideas were raised in the scientific community about 
turbulence (2D or 3D, no matter for the present purpose). 

Second step. These ideas penetrated the domain of applied sciences where the 
description of turbulence was urgently required, e.g. meteorology, aeronautics. 
Researchers in this field after having taken into account these new concepts raised 
practical questions such as : 

- How can a typhoon be described by your theory ? 
- The biggest problern in turbulent flow is the detachment of vortices the wing tips of 

the plane. I don't see any vortices in your theory ! 
The reaction of the scientists can be summarised as follows. They claim that they 

have also observed this kind of phenomena, but argue that these are always linked to end 
· effects. The turbulence theory is only valid in the case of an homogenous isotropic 
turbulence which takes place .. .in an unbounded domain. As the notion of turbulence is at 
90 % related to the field of the fluid mechanics, one of the branches of the physics most 
closely related to technical applications, they had, for obvious reasons if not compulsority, 
to change the orientation of their research relatively quickly. 

Scientists tried to take into account the influence of bounded domains which 
introduces in fact a characteristic size depending on each experimental set-up. But as we 
are interested in highly non-linear phenomena, this characteristic length scale cannot be 
simply considered as the particular length scale which bounds the application of the theory 
of Kraichnan. In fact interactions of the flow with the physical boundary can be so strong 
that they could govern the whole flow. This fact contributes to the development of a new 
approach on turbulent flows which pays more attention to the structure of the fl.ow itself. 
This new impulse has led to the idea (in the field of 2D-flows), of starting a new view for the 
turbulence taking into account the fact that for each "blind" wavelength in an energy 
spectrum there exists in reality a physical structure of finite size. Then, even for almost 
total inertial flows, the specialists are now used to talking about "the dynamics of vortices" 
when dealing with 2D-turbulent flows. This is not only a matter of wording but has a great 
influence on the way the experiments are designed. 

The GALINKA and MATUR experiments in Karlsruhe and Grenoble are two good 
examples of the actual orientation which is given to the research on 2D-turbulent flows. 
Their characteristic sizes are not large, as the effects of the boundary on the flow are not 
intended tobe neglected. On the contrary, one of the final aims of those experiments is to 



35 

integrate the influence of the walls into the analytical models. The potential probes 
developed in both cases are similar and they are located so that the information they give 
enable us to build an image of the flow structure. 
This experimental study of the 2D-dynamics of vortices in the presence of boundaries is 
essential for the purpose of applications where the flows are always bounded. From a 
theoretical point of view, it can be seen, at a first glance, as the revenge of an old school of 
physicists which would have never deeply integrated the statistical approach of turbulence 
and would have tried desperately to deal with a more mechanistic approach which could 
allow, once more, deterministic reasoning tobe efficient. At a second glance, one can see 
that statistical tools and related manners of thinking, are already well cast in the brains of 
most of the physicists. Then new statistical approaches are developed for 2D-flow 
dynamics, which benefi.t from the knowledge accumulated in statistical thermodynamics. 
This is specific to 2D-flows, thanks to the existence of conservative quantities where the 
vorticity is then the unavoidable most important physical quantity. This new approachwill 
be of great benefit for the study of fluid mechanics, without prejudging the results to 
come, in thesensethat it forces scientists from different branches to work together. This is 
not easy because we deal here with almost the worst case as fluid mechanicists and 
physicists have to work together. 

Then, the new generation of experimental facilities as GALINKA at IATF or MATUR at 
· the EPM-MADYLAM laboratory encounters a great challenge, as they must be able to serve 
as a guide for new analytical models and simultaneously to answer some more technical 
questions linked to peculiar applications. 

This is the key point, and bothIATFand EPM-MADYLAM laboratory are well placed 
for this challenge, since applied and theoretical investigations are performed on the same 
experimental facility. 
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IV-CONCLUSIONS 

The GALINK.A facility was constructed as closely as possible to the "theoretical 

configuration" used by L. Bühler for his computations on the influence of inhomogeneaus 
conductivity of the Hartmann wall in a ducted flow. This allows us to obtain detailed 
comparisons between what can be called the numerical approach and the experimental 

performance, as we have shownon previous pages. 
From a technical point of view, the potential probe arrays have been carefully 

prepared so that the experimental results obtained are the most precise ones performed in 

the field of velocity characterisation of 2D-MHD flows. This is due to the knowledge which 
the team at IATF in Karlsruhe had acquired concerning the use of the In/Ga/Sn alloys in 
past years. When using mercury for instance, the behaviour of this metal, regarding 
amalgamation processes, leads to the use of larger potential probe diameters to avoid 
electrical contact problems. The resolution of the velocity field is then reduced. It is also 

noteworthy that the GALINKA facility has a removable test section which can be easily 

replaced for the purpose of other research objectives. Moreover, the potential probe arrays 
can be inserted in any new test section. 

But one can say that an experiment has been successful when the precision of the 
measurements performed are suitable not only to check previous analytical predictions, 

. but also to pointout new physical features. I think that we have started to succeed in this 
direction. Indeed, we have shown in this report that the measurements we get in the non 
linear regime, far away from the stability threshold of the flows, exhibit some strange 

features which can hardly be taken into account by a 2D-approach neglecting the influence 
of the lateral walls. In some cases the experimental results should be seen as a guide in 
order to develop new models or to check 3D-calculations that are now being used at the 
IATF. 

For further comparisons with the numerical predictions, one should be able to 
retrieve from the measurements a chart of the velocity and vorticity field. Forthis purpose 
we need the use of the new probe array we developed. The next step will then be to obtain 

a direct image of the flow by this new observation tool as the main technical problems seem 
to be solved. This will allow us to get a better understanding of the flow especially 

concerning the expected interactions with the lateral walls. From our point of view, this 
task should be considered as a priority, both, for practical applications (where unbounded 

domains are seldom encountered!) and for the sake of comparisons with theoretical 
approaches. As already known in the purely hydrodynamic case [6], the non linear 

interactions of vortices with lateral walls might lead to complex channel flow pattems. 
Then the direct experimental visualisation of these interactions is needed in the case of 

flows under magnetic fields to achieve the development of an underlying theory. 

To summarise, we think that a valuable step in the understanding of these 

phenomena might only be achieved under the condition of a close interaction between 

theorists and experimentalists. I hope that we have already achieved a significant step in 

this direction. 
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